首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. (Ⅰ)试证A可对角化,并求对角阵A; (Ⅱ)计算行列式|A-2E|.
admin
2019-08-21
56
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
(Ⅰ)试证A可对角化,并求对角阵A;
(Ⅱ)计算行列式|A-2E|.
选项
答案
(I)设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A—E)=O,故R(A)+R(A—E)=n,事实上,因为A(A—E)=O,所以R(A)+R(A—E)≤n另一方面,由于E—A与A—E的秩相同,则有n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+R(A—E),从而R(A)+R(A—E)=n. 当λ=1时,因为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,因此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n一r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]
解析
只需证明A有n个线性无关的特征向量,即可说明A可相似对角化,而对角阵主对角线上的元素即为A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/kKN4777K
0
考研数学二
相关试题推荐
求f(x,y)=x+xy一x2一y2在闭区域D={(x,y)|0≤x≤1,0≤y≤2}上的最大值和最小值.
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f’(0)=1,f"(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
已知问λ取何值时,β可由α1,α2,α3线性表出,但表达式不唯一;
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性.
计算二重积分(x2+y2)dσ,其中D是由直线x=2,y=2,x+y=1,x+y=3以及x轴与y轴所围成的平面区域。
α1,α2,α3,α4均是3维非零向量.则下列命题正确的是()
设则B=()
(2013年)设封闭曲线L的极坐标方程为r=cos3θ,则L所围平面图形的面积是________.
随机试题
给家兔静脉注射25%葡萄糖10mL后尿量增加,其原因是
甲服装公司与乙银行订立合同,约定甲公司向乙银行借款300万元,用于购买进口面料。同时,双方订立抵押合同,约定甲公司以其现有的以及将有的生产设备、原材料、产品为前述借款设立抵押。借款合同和抵押合同订立后,乙银行向甲公司发放了贷款,但未办理抵押登记。之后,根据
依据增值税的有关规定,符合条件的民政福利企业的下列行为,不得享受增值税减免税优惠政策的有()。
下列车辆中,可以免征车辆购置税的是()。
交互式教学主要是帮助__________的学生阅读领会。
Mothersholdingjobsoutsidethehomeshouldhave______schedulestomakeiteasiertocarefortheirchildren.
《三经新义》
(2016年真题)2014年3月2日,甲、乙离婚并分割了共同财产。2015年3月8日,甲发现乙在离婚时将属于夫妻共有的40万元存款转移到了乙兄的银行账户中,遂向人民法院起诉,请求分割该40万元存款。本案的诉讼时效期间起算日为()。
In1929JohnD.Rockefellerdecideditwastimetosellshareswhenevenashoe-shineboyofferedhimasharetip.Duringthepa
主机与外部设备之间通过______相连。
最新回复
(
0
)