首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3元实二次型f(x)=xTAx经正交变换x=Cy化成f(x)=y12+y22. 是Ax=0的解向量. (1)求所用的正交变换x=Cy; (2)求A; (3)写出该实二次型f(x)的表达式.
设3元实二次型f(x)=xTAx经正交变换x=Cy化成f(x)=y12+y22. 是Ax=0的解向量. (1)求所用的正交变换x=Cy; (2)求A; (3)写出该实二次型f(x)的表达式.
admin
2019-05-11
44
问题
设3元实二次型f(x)=x
T
Ax经正交变换x=Cy化成f(x)=y
1
2
+y
2
2
.
是Ax=0的解向量.
(1)求所用的正交变换x=Cy;
(2)求A;
(3)写出该实二次型f(x)的表达式.
选项
答案
(1)由二次型f(x)=x
T
Ax经正交变换x=Cy化成f(x)=y
1
2
+y
2
2
知λ
1
=λ
2
=1和λ
3
=0是A的3个特征值,再由α是Ax=0的解向量知α是A的0特征值对应的特征向量.若设特征值λ
1
=λ
2
=1所对应的特征向量为x,则有xα=0,即x
2
一x
3
=0,解之得[*] 其中k
1
,k
2
是不同时为0的任意常数.于是得λ
1
=λ
2
=1所对应的特征向量. 取 [*]
解析
本题考查用正交变换化二次型为标准形的逆问题.
转载请注明原文地址:https://kaotiyun.com/show/kNV4777K
0
考研数学二
相关试题推荐
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
求不定积分
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
求椭圆=1与椭圆=1所围成的公共部分的面积.
曲线在t=1处的曲率k=___________.
随机试题
人民法院受理破产申请后,管理人接管债务人的财产之前,对于已经开始而尚未终结的有关债务人的民事诉讼或者仲裁,下列说法正确的是:()
如何使用橡皮图章工具在图象中取样:
证明氨水是弱碱的事实是()。
患儿,男,1岁,弛张高热,咳嗽6天,精萎纳差,时有呕吐,周围血WBC26×109/L,查体:烦躁不安,气促,面色苍白,皮肤可见猩红热样皮疹,两肺可闻中小湿啰音。该患儿在治疗过程中突然出现呼吸困难加重,经吸痰和给予氧气吸入后无明显缓解,应考虑可能是
根据《企业会计准则》规定,施工企业发生的固定资产日常修理费应作为()予以确认。
用以反映企业资本的账户是()。
警卫工作包括()。
我要说,我们的政治制度不是从我们邻人的制度中模仿得来的。我们的制度是别人的模范,而不是我们模仿任何其他的人的。我们的制度之所以被称为民主政治,因为政权是在全体公民手中,而不是在少数人手中。解决私人争执的时候,每个人在法律上都是平等的;让一个人负担公职优
A、 B、 C、 D、 D
张教授:如果在视觉上不能辨别艺术复制品和真品之间的差异,那么复制品就应该和真品的价值一样。因为如果两件艺术品在视觉上无差异,那么它们就有相同的品质。要是它们有相同的本质,它们的价格就应该相等。李研究员:你对艺术了解太少了!即使某人做了一件精致的复
最新回复
(
0
)