首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
设a,b,c为实数,求证:曲线y=ex与y=ax2+bx+c的交点不超过三个.
admin
2017-07-28
57
问题
设a,b,c为实数,求证:曲线y=e
x
与y=ax
2
+bx+c的交点不超过三个.
选项
答案
令f(x)=e
x
一ax
2
一bx—c,那么问题等价于证明f(x)的零点不超过三个.假设结论不正确,则至少有四个点x
1
<x
2
<x
3
<x
4
,使得f(x
i
)=0,i=1,2,3,4. 由于f(x)在[x
1
,x
4
]上可导,由罗尔定理可知f’(x)在(x
1
,x
2
),(x
2
,x
3
),(x
3
,x
4
)内至少各有一个零点ξ
1
,ξ
2
,ξ
3
.又由于f’(x)在[ξ
1
,ξ
3
]上可导,由罗尔定理可知f”(x)在(ξ
1
,ξ
2
),(ξ
2
,ξ
3
)内至少各有一个零点η
1
,η
2
.同样地,由于f”(x)在[η
1
,η
2
]上可导,由罗尔定理可知f”’(x)在(η
1
,η
2
)内至少有一个零点ζ.因此至少存在一点ζ∈(一∞,+∞)使得f”’(ζ)=0,而f”’(x)=e
x
>0(x∈(一∞,+∞)),这就产生了矛盾.故f(x)的零点不超过三个.
解析
转载请注明原文地址:https://kaotiyun.com/show/kOu4777K
0
考研数学一
相关试题推荐
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为ξ1=
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(f(1))处的切线斜率为().
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=________.
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
=_________,其中Ω为曲线绕z轴旋围一周而成曲面与平面z=2,z=8所围立体.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
随机试题
领导者针对职工不愿意学习的倾向,开展思想政治工作。下列做法中不正确的是
患儿2岁,身高70cm,智力低下,塌鼻梁、舌体厚大,腹胀、便秘,有脐疝。为明确诊断,首先应选择的检查是
妊娠期心脏病患者中下列哪项不是早期心衰体征
因土地侵权纠纷起诉的,人民法院()。
乡、民族乡、镇的撤销、设置和政府驻地搬迁的批准机关是()。
牵牛花没有挺拔的躯干,却凭借攀附篱笆墙展示了自己的美丽;篱笆墙没有靓丽的外表,却凭借牵牛花的攀附成了一道风景。请谈谈这段话给你的启示。
2009年1月6日,中国海军护航舰艇编队顺利抵达亚丁湾海域执行护航任务。亚丁湾位于()
丈夫和妻子讨论孩子上哪所小学为好。丈夫称:根据当地教育局最新的教学质量评估报告,青山小学教学质量不高。妻子却认为:此项报告未必客观准确,因为撰写报告的人中有绿水小学的人员,而绿水小学在青山小学附近,两所学校有生源竞争的利害关系,因此青山小学的教学质量其实是
2015年9月,习近平在纽约联合国总部发表重要讲话时指出“当今世界,各国相互依存、休戚与共。我们要继承和弘扬联合国宪章的宗旨和原则,构建以合作共赢为核心的新型国际关系,打造人类命运共同体。”提出构建人类命运共同体思想,具有鲜明的时代背景。具体地说
静态数据成员在()进行初始化。
最新回复
(
0
)