首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
admin
2018-11-23
32
问题
设α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
是两个线性无关的n维实向量组,并且每个α
i
和β
j
都正交,证明α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关.
选项
答案
设c
1
α
1
+c
2
α
2
+…+c
s
α
s
+k
1
β
1
+k
2
β
2
+…+k
t
β
t
=0, 记η=c
1
α
1
+c
2
α
2
+…+c
s
α
s
=-(k
1
β
1
+k
2
β
2
+…+k
t
β
t
), 则(η,η)=-(c
1
α
1
+c
2
α
2
+…+c
s
α
s
,k
1
β
1
+k
2
β
2
+…+k
t
β
t
)=0即η=0,于是c
1
,c
2
,…,c
s
,k
1
,k
2
,…,k
t
全都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/l6M4777K
0
考研数学一
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤l}上服从均匀分布,记(Ⅰ)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ。
设f(x,y)=,试讨论f(x,y)在点(0,0)处的连续性,可偏导性和可微性.
设三阶实对称矩阵A的特征值为λ1=1,λ2=-1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,-2)T,求A。
证明:当x>0时,.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=__
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P-1AP为对角形矩阵.
随机试题
所有的成型特征需要什么类型面?
患者,男,18岁。足球赛后右膝关节疼痛,行走时交错。体检:右膝关节肿胀,外侧压痛明显。下列哪一项影像学检查最有助于诊断
患者1天前出现饮水、见水、听流水声时,严重声嘶,大汗流涎,现患者逐渐安静,神志不清,肢体软瘫,呼吸变慢不整,考虑诊断为
根据《环境影响评价技术导则一地面水环境》,向某小型封闭海湾排放水的工业项目,在确定环境现状调查范围时,主要考虑的因素是()。
某工厂在提高职工安全管理素质的培训过程中,提出“我厂危险源比较多,不可能根除一切危险源和危险,所以宁可减少总的危险性,而不是只彻底消除几种选定的危险”的观点,该观点符合事故致因理论的()。
以下关于个人独资企业的表述,错误的是( )。
某储户2000年6月1日存入定活两便储蓄存款1000元,于2000年8月1日支取,如果支取日整存整取定期储蓄存款半年期利率为6%,活期储蓄利率为2.25‰,银行应付利息为()。
某物业管理公司截至2007年7月申报物业管理企业资质时,所管理的物业住宅小区总建筑面积为1378964m2,则该项指标属于()。
如需要向一个二进制文件尾部添加数据,则该文件的打开方式为()。
Cooperationisthecommonendeavoroftwoormorepeopletoperformataskorreachajointlycherishedgoal.Likecompetitiona
最新回复
(
0
)