首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
admin
2017-08-18
52
问题
讨论曲线y=2lnx与y=2x+ln
2
+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx一1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*]f(x) =[*][2x+k+lnx(lnx一2)] =+∞, [*]f(x)=[*][(2x+k)+lnx(lnx一2)]=+∞, 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/l6r4777K
0
考研数学一
相关试题推荐
设(X,Y)在区域D={(x,y)|x2+y2≤1,x≥0,y≥0)上服从均匀分布,令求U与V的相关系数.
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
设函数则f(x)的间断点()
设A是n阶矩阵,λ,μ是实数,ξ是n维非零向量.若A可逆,且有A3ξ=λξ,A5ξ=μξ,证明ξ是A的特征向量,并指出其对应的特征值.
函数u=3x2y一2yz+z3,v=4xy—z3,点P(1,一1,1)u在点P处沿gradv|p方向的方向导数等于________.
设是2阶实矩阵,则下列条件不是A相似于对角阵的充分条件的是()
(2001年试题,一)设y=e*(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________________.
本题考查定积分的性质和定积分的计算,由于是对称区间上的定积分,一般利用奇函数,偶函数在对称区间上积分性质简化计算,本题还用到了华里士公式.[*]
计算极限
将旅店的房租价格从每天75元提高到每天80元,会使出租量从每天100套降到每天90套.求房租分别为每天75元和80元时旅店的总收益;
随机试题
一般在满足油井产能要求时,应采取()、长冲程、慢冲次的原则。
人在摄取混合食物时,其呼吸商通常为
悬空式桥体龈面与牙槽嵴顶黏膜的距离至少是
劳动争议案件中存在劳动关系的用人单位与职工称为()。
( )经常会使用“矛盾处方”、“维持症状”、“奇迹提问”等方法作为解决问题的焦点。
年营业收入1000万,直接经营成本400万,折旧50万,税率33%,求企业经营性现金流量净额。()
GlobalWarmingControversyVocabularyandExpressionscontroversyemissionsnon-committalprojectionscur
Chinesepeopleareusuallydescribedashospitable,generousandamiable.Theunderlinedpartmeans______.
Volunteersareourheartandsoul.Pleasecomeandhelpusbuildhomesfor【B1】______low-incomefamilies.Thereisnoexperience
A、It’smoreconvenienttomakechangeswhenusingacomputer.B、Acomputeruseslesspaper.C、It’slessexpensivetousethecom
最新回复
(
0
)