首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-05-12
54
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解; ②(2)的解必是(1)的解;
③(1)的解不是(2)的解; ④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
综上所述,故选A。
转载请注明原文地址:https://kaotiyun.com/show/l804777K
0
考研数学一
相关试题推荐
问a,b,c取何值时,(Ⅰ),(Ⅱ)为同解方程组?
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
n把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,下列两种情况分别求开门次数的数学期望和方差:试开过的钥匙重新放回.
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤k/a(eax-1).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设A~B,.求可逆矩阵P,使得P-1AP=B.
设总体X的分布律为P(X=k)=(1-p)k-1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放同,求第二次抽取次品的概率.
求幂级数(n2+1)xn的和函数.
设随机变量(X,Y)的分布函数为F(x,y),用它表示概率P(一X<a,Y<y),则下列结论正确的是().
随机试题
恶意代码的特征不体现()
强化理论认为人的行为是对其___________的函数。
下述肿瘤中,不属于原发性恶性骨肿瘤的是
躯干骨包括()
财产物资的盘盈是指( )。
某企业预计的资本结构中,债务资本与权益资本的比例为1:4,债务税前资本成本为10%。目前市场上的无风险报酬率为5%,市场风险溢价为9%,公司股票的β系数为1.5,所得税税率为5%,则加权平均资本成本为()。
扣除通货膨胀后的利率被称为()。
双方当事人是法人或者其他组织的,向法院申请执行生效民事裁判的期限为()。
李老师一个学期对父亲是副乡长的小杜家访N次,却从未对需要帮助的留守儿童小龙家访过。李老师的做法()
数据字典(DD)所定义的对象都包含于
最新回复
(
0
)