首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(1)Anx=0和(2)An+1x=0,现有四个命题: ①(1)的解必是(2)的解; ②(2)的解必是(1)的解; ③(1)的解不是(2)的解; ④(2)的解不是(1)的解。 以上命题中正确的是( )
admin
2019-05-12
81
问题
设A是n阶矩阵,对于齐次线性方程组(1)A
n
x=0和(2)A
n+1
x=0,现有四个命题:
①(1)的解必是(2)的解; ②(2)的解必是(1)的解;
③(1)的解不是(2)的解; ④(2)的解不是(1)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
综上所述,故选A。
转载请注明原文地址:https://kaotiyun.com/show/l804777K
0
考研数学一
相关试题推荐
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设A,B为两个n阶矩阵,下列结论正确的是().
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
n把钥匙中只有一把可以把门打开,现从中任取一把开门,直到打开门为止,下列两种情况分别求开门次数的数学期望和方差:试开过的钥匙重新放回.
设随机变量X满足|X|≤1,且P(x=-1)=1/8,P(X-1)=1/4,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0).
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
电信公司将n个人的电话资费单寄给n个人,但信封上各收信人的地址随机填写,用随机变量X表示收到自己电话资费单的人的个数,求E(X)及D(X).
设级数(an-an-1)收敛,且bn绝对收敛.证明:anbn绝对收敛.
求过直线的平面方程.
某建筑工程打地基时,需用汽锤将桩打进土层。汽锤每次击打,都将克服土层对桩的阻力而作功。设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0)。汽锤第一次击打将桩打进地下am。根据设计方案,要求汽锤每次击打桩时所做的功与前一次击打时所做的功
随机试题
设方阵A、B满足AB+E=A2+B,且求B.
患者,女性,42岁。患乳腺癌,拟行乳腺切除术。护士想了解患者对疾病的真实感受最好采用哪种收集资料的方法
患者,女性,33岁。有系统性红斑狼疮5年,一直服用药物治疗,最近主诉视力下降,可能因为服用了
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差。若+kS2为np2的无偏估计量,则k等于()。
地下防水卷材采用外贴法施工时,每次卷材的铺贴顺序应该是()。
中国由旧民主主义革命向新民主主义革命的转变和由新民主主义革命向社会主义革命的转变的共同之处是()。
弗拉维尔等人(Flavelleta1.,1966)的研究结果表明,儿童使用记忆策略的过渡时期是
甲、乙双方于4月2日约定:甲向乙以8万元的价格购买房屋3间,分两次将房款付清,付清价款后房屋即归甲所有,乙迁出该房屋;乙若想继续利用此房经商,则应该于甲最后一次付清房款之前与甲签订房屋租赁合同,租金为每月2000元。合同签订后,甲即付清了全部房款,双方于5
下列各进制的整数中,值最大的一个是
CreativeThinkingI.FactstobeknownaboutcreativethinkingA.Peoplearecreative【T1】______【T1】______B.Itisn’tdeveloped
最新回复
(
0
)