首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶方阵,且有3个相异的特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3, 证明:β,Aβ,A2β线性无关.
设A为3阶方阵,且有3个相异的特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3, 证明:β,Aβ,A2β线性无关.
admin
2020-04-30
52
问题
设A为3阶方阵,且有3个相异的特征值λ
1
,λ
2
,λ
3
,对应的特征向量依次为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
,
证明:β,Aβ,A
2
β线性无关.
选项
答案
因为Aα
i
=λ
i
α
i
(i=1,2,3),则 Aβ=A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=A(Aβ)=A(λ
1
α
1
+λ
2
α
2
+λ
3
α
3
) =λ
2
1
α
1
+λ
2
2
α
2
+λ
2
3
α
3
. 设存在常数K
1
,K
2
,K
3
,使 K
1
β+K
2
Aβ+K
3
A
2
β=0, 进而得 (k
1
+k
2
λ
1
+k
3
λ
2
1
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
2
3
)α
3
=0. 由于α
1
,α
2
,α
3
线性无关,于是有 [*] 其系数行列式 [*] 故k
1
=k
2
=k
3
=0,所以,β,Aβ,A
2
β线性无关.
解析
本题考查方阵不同的特征值对应的特征向量是线性无关的性质和向量组线性相关性的证明.
转载请注明原文地址:https://kaotiyun.com/show/lIv4777K
0
考研数学一
相关试题推荐
(03年)设向量组I:α1,α2,…,αr,可由向量组Ⅱ:β1,β2,…,βs线性表示,则
设(X1,X2,X3)为来自总体X的简单随机样本,则下列不是统计量的是().
n阶实对称矩阵A正定的充分必要条件是().
设列向量组α1,α2,α3线性无关,则向量组α1+α2,α2+α3,α1+α3线性_________.
设3阶矩阵A满足|A-E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=________.
设A=,A*是A的伴随矩阵,则A*X=0的通解是_______。
设A是4×3矩阵,且A的秩r(A)=2,而B=,则r(AB)=______。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表示,则t的值是________。
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4β5]经过初等行变换化成阶梯形矩阵为则()
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=_________。
随机试题
《雷雨》是一出()
如下_______成立,必使p∧q∧r为假。()
一种与生活愿望相结合并指向于未来的想象是( )。
下列穴位中,可治疗瘾疹、湿疹、丹毒等血热性皮外科病的穴位是
关于两组呈正态分布的数值变量资料,但均数相差悬殊,若比较离散趋势,最好选用下列哪项指标
按现行制度,现金日记账和银行存款日记账必须采用订本式账簿。()
培养德、智、体全面发展的社会主义事业的建设者和接班人的根本途径是()。
在教学中最常用的方法是
中断是CPU与外部设备数据交换的重要方式。CPU响应中断时必须具备3个条件,分别为外部提出中断请求,本中断未屏蔽,(4)。CPU响应中断后,必须由(5)提供地址信息,引导程序进入中断服务子程序;中断服务程序的入口地址存放在(6)中。
在VisualFoxPro中,"表"通常是指
最新回复
(
0
)