首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
admin
2020-03-16
34
问题
设三阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α
3
=(一1,2,一3)
T
都是A属于λ=6的特征向量,求矩阵A。
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另一特征值。 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关。 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解得此方程组的基础解系α=(一1,1,1)
T
。 根据A(α
1
,α
2
,α)=(6α
1
,6α
2
,0)得 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
-1
=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/ldA4777K
0
考研数学二
相关试题推荐
[2015年]函数f(x)=在(一∞,+∞)内().
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
[2004年]设f(x)=∫xx+π/2∣sint∣dt.证明f(x)是以π为周期的周期函数.
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).计算极限
已知n阶矩阵A满足A3=2E,B=A2-2A+2E,求(B一E)-1.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
随机试题
证明、解释、反驳或推销己方观点的过程体现在()
谈判期限
下列何种细菌的动力试验在25℃培养时为阳性,而在37℃培养时为阴性
实现总供求关系的基本平衡,短期应以()。
监理工程师受业主委托对物资供应进度进行控制时,其工作内容包括()
【2012年烟台市市直】体罚学生,经教育不改的教师,由所在学校、其他教育机构或者教育行政部门给予行政处分或解聘。()
某古代水利工程“旱时引水浸润,雨则杜塞水门,故记日‘水早从人,不知饥馑”’。后来三国时蜀相诸葛亮“征丁十二百人护之”,据此判断,这项水利]二程是()。
物权法定原则的具体内容表现为()
为使进程从阻塞态转换为挂起态,使用的原语是()。
下面描述不属于软件特点的是
最新回复
(
0
)