首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为 H0:μ=μ0=0;H1:μ≠0. (Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值; (Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为 H0:μ=μ0=0;H1:μ≠0. (Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值; (Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
admin
2016-10-26
61
问题
已知x
1
,x
2
,…,x
10
是取自正态总体N(μ,1)的10个观测值,统计假设为
H
0
:μ=μ
0
=0;H
1
:μ≠0.
(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={|
|≥k},求k的值;
(Ⅱ)若已知
=1,是否可以据此样本推断μ=0(α=0.05)?
(Ⅲ)若H
0
:μ=0的拒绝域为R={|
|≥0.8},求检验的显著性水平α.
选项
答案
(Ⅰ)对于H
0
:μ=μ
0
=0;H
1
:μ≠0,当H
0
成立时,检验统计量U=[*]~N(0,1).根据α=0.05,所以λ=1.96,即P{|U|≥1.96}=0.05.该检验的拒绝域为 R={|U|≥1.96}=[*] 于是k=[*]≈0.62. (Ⅱ)由(Ⅰ)知拒绝域R= [*]>0.62,因此应拒绝H
0
,即不能据此样本推断μ=0. (Ⅲ)显著性水平α是在H
0
成立,拒绝H
0
的概率,即 α=P{(x
1
,x
2
,…,x
10
)∈R|H
0
成立}=P{(x
1
,x
2
,…,x
10
)∈R|μ=0} =P{|[*]|≥0.8|μ=0}. 由于μ=0时,[*],所以有 α=P{[*] =2[1一Ф(2.53)]=0.0114.
解析
方差σ
2
为已知关于正态总体期望值μ的检验H
0
:μ=μ
0
,选取的统计量为U=
由于μ=μ
0
时,
,U~N(0,1),因此拒绝域R={|U|≥λ}与
的拒绝域R=
等价.
转载请注明原文地址:https://kaotiyun.com/show/lmu4777K
0
考研数学一
相关试题推荐
[*]
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
下列各对函数中,两函数相同的是[].
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
先求出φ(x),设P(x,y),Q(x,y)有连续偏导数,在所给的单连通区域D[*]
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
随机试题
身高不等的9个人站成一排照相,要求身高最高的人排在中间,按身高向两侧递减,且靠近中间的人都比稍远的人高。共有多少种排法?
成对的脑颅骨是()
关于马来酸氯苯那敏的性质描述中正确的是
A、15~18B、13~16C、8~16D、7~9E、3~8O/W型乳化剂的HLB值()
以下哪些说法不符合我国专利法的规定?
把世界看作是从来如此、始终不变的自然界,人不过是从属于自然的一部分。这种观点是()。
2,9,64,625,()
材料2与材料3在本质上是否相同?比较材料1、2、3,请回答马克思主义是如何看待科学技术的?
利用“粘贴URL”菜单连接北京大学。
Fromaveryearlyage,perhapstheageoffiveorsix,IknewthatwhenIgrewIshouldbeawriter.Betweentheagesofabouts
最新回复
(
0
)