首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
admin
2021-02-25
20
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
选项
答案
p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,其秩为3,并且α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/mi84777K
0
考研数学二
相关试题推荐
设0<k<1,f(x)=kx一arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
随机试题
语声寂然,喜惊呼者是
某水库枢纽工程由大坝及泄水闸等组成。大坝为壤土均质坝,最大坝高15.5m,坝长1135m。该大坝施工承包商首先根据设计要求就近选择某一料场,该料场土料黏粒含量较高,含水量较适中。在施工过程中,料场土料含水量因天气等各种原因发生变化,比施工最优含水量偏高,承
目前我国市场上的理财产品大多数是结构型产品,即商业银行个人理财产品的收益率取决于其合约中指定的基础资产或基础变量的变化。()
下列买卖合同中,属于我国《合同法》规定的特种买卖合同的有()。
河南(豫)菜系属中国烹饪风味流派“十大菜系”之一。
比较的形式主要有同类比较和______比较。
在班级管理中,班主任是班级的()。
教师可以在“教书”实践中贯彻落实教育法律法规和其他相关的方针和政策。()
A.YoushouldgotoanEnglishcorner.B.WhatcanItalkabout?C.YoushouldlearnEnglishwell.D.What’stheproblem?E.You
北京农业大学的教授在河北省推广柿树剪枝技术时,为了说服当地的群众,教授把一块柿树园一分为二,除自然条件相同外,其他的条件包括施肥、灭虫、浇水、除草等也都相同,其中的一块柿树剪枝,而另一块柿树不剪枝。到收获季节,剪枝的一块柿子的产量比不剪枝的多三成以上。这下
最新回复
(
0
)