首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
admin
2015-04-30
44
问题
设n维向量α
1
,α
2
,…,α
s
的秩为r,则下列命题正确的是
选项
A、α
1
,α
2
,…,α
s
中任何r一1个向量必线性无关.
B、α
1
,α
2
,…,α
s
中任何r个向量必线性无关.
C、如果s>n,则α
s
必可由α
1
,α
2
,…,α
s—1
线性表示.
D、如果r=n,则任何n维向量必可由α
1
,α
2
,…,α
s
线性表示.
答案
D
解析
r(α
1
,α
2
,…,α
s
)=r
α
1
,α
2
,…,α
s
中一定存在r个向量线性无关,而任意r+1个向量必线性相关.
当向量组的秩为r时,向量组中既可以有r一1个向量线性相关,也可以有r个向量线性相关,故(A)、(B)均错误.例如向量α
1
,α
2
,α
3
,α
4
分别为
(1,0,0,0),(0,1,0,0),(0,0,1,0),(3,0,0,0),
其秩为3,其中α
1
,α
4
线性相关,α
1
,α
2
,α
4
也线性相关.该例说明,4维向量可以有2个向量线性相关,也可以有3个向量线性相关.但肯定有3个向量线性无关.
当s>n时,表明α
1
,α
2
,…,α
s
必线性相关,此时有α
i
可以由α
1
,α
i—1
,…,α
i+1
线性表示,但α
s
不一定能由α
1
,…,α
s—1
线性表示.故(C)不正确.
若r(α
1
,α
2
,…,α
s
)=n,则对任何凡维向量β必有r(α
1
,α
2
,…,α
s
,β)=n.故(D)正确.因此应选D.
转载请注明原文地址:https://kaotiyun.com/show/n5bD777K
0
考研数学二
相关试题推荐
我国第一部叙事详细、完整的编年体史书是()。
从众行为:个人因受到群体的压力而在知觉判断、动作等方面做出的与众人趋于一致的行为。根据上述定义,下列哪一项不属于从众行为?()
A、 B、 C、 D、 D通过观察可以发现,第一套图形中都拥有共同元素两条直线,第二套图形中前两个图形的共同元素是一个大圆和两个小圆,依此规律,只有D项符合这一规律。
某校电子院与计算机院学生总数可组成一个实心方阵,电子院与电信院学生总数也可组成一个实心方阵。已知计算机院有100人,电信院有168人,那么大方阵比小方阵每边人数多几人?
如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?
设f(χ)为单调函数,且g(χ)为其反函数,又设f(1=2),f′(1)=-,f〞(1)=1则g〞(2)=________.
已知累次积分I=(rcosθ,rsinθ)rdr,其中a>0为常数,则I可写成
设f(x,y)有连续的偏导数且f(x,y)(ydx+xdy)为某一函数u(x,y)的全微分,则下列等式成立的是
已知矩阵A=只有一个线性无关的特征向量,那么矩阵A的特征向量是_______。
已知f(x)连续,且试求的值.
随机试题
Femalecheetahs(猎豹)attheBronxZooinNewYorkjustloveCalvinKlein’sObsessionforMenperfume(香水).No,theydon’t【B1】__
不符合人际传播特点的是
胃火上逆型呃逆的主证不包括
关于我国宪法中对公民道德教育的规定,下列说法中正确的是:()
对直流传动系统,在规定的运行和使用条件下,施加规定的单位阶跃给定信号,系统实际值第一次达到给定值的时间称为()。
施工承包合同履约担保的有效期始于()之日。
下列关于投资型保险产品的说法,错误的是()。
某中学,高二学生人数占总学生人数的18.5%,如果用圆形图来表示,则其所占的扇形的中心角度为( )。
秦某带着8岁的儿子买肉时,与摊主发生争执,继而互殴。秦某被摊主用刀背打击造成面部骨折,脑部受损。如该案进入诉讼程序,秦某的儿子属于()。
Governmentsthatwanttheirpeopletoprosperintheburgeoningworldeconomyshouldguaranteetwobasicrights:therighttopr
最新回复
(
0
)