首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解. 求这个方程和它的通解:
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解. 求这个方程和它的通解:
admin
2014-02-05
90
问题
已知y
1
*
(x)=xe
-x
+e
-2x
,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+Py
’
+qy=f(x)的三个特解.
求这个方程和它的通解:
选项
答案
由线性方程解的叠加原理→y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是相应的特征方程为(λ+2)
2
=0,即λ
2
+4λ+4=0.原方程为y
’’
+4y
’
+4y=f(x).①由于y
*
(x)=xe
-x
是它的特解,求导得y
*’
(x)=e
-x
(1一x),y
^’’
(x)=e
-x
(x一2).代入方程①得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x)→f(x)=(x+2)e
-x
→原方程为y
’’
+4y
’
+4y=(x+2)e
-x
,其通解为y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nT34777K
0
考研数学二
相关试题推荐
(2017年)设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记Xi,则下列结论中不正确的是()
(1995年)设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则().
(2008年)设函数f连续,若F(u,v)=其中区域Duv为图中阴影部分,则=()
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为【】
[2009年]设α=[1,1,1]T,β=[1,0,k]T,若矩阵αβT相似于则k=_________.
(2016年)设函数f(u,v)可微,z=z(x,y)由方程(z+1)z—y2=x2f(x—z,y)确定,则dz|(0,1)=______。
已知函数f(x)在(一∞,+∞)内具有二阶连续导数,且其一阶导函数f′(x)的图形如图8一1所示,则:f(x)的递减区间为___________.
设f(x)=xsinx+cosx,x∈.求f(x)在上的最小值与最大值;
设k>0,f(x)=kx3-x,则f(x)在上的最大值为()
随机试题
现金比率是评价企业短期偿债能力强弱最可信的指标,现金比率并非越大越好。()
胸部CT扫描见前纵隔肿块,临床有典型肌无力患者,应首先考虑
不属于卵巢囊肿CT特点的是:
中毒型菌痢的发病原理目前认为最主要是
组织中均为初生构造的药材主要来源于
药物消除半衰期(t1/2)指的是下列哪一条
沥青混凝土面层可由一层或数层组成。双层或三层式面层的下面层常用()。
下列关于初步项目范围编写的主要内容,说法错误的有________。
下列选项是医务社会工作者拟订的小组工作的目标,请问,哪一项目标的次序安排最恰当?( )
Everynightshelistenedtoherfathergoingaroundthehouse,lockingthedoorsandwindows.Shelistened:thebackdoorclosed
最新回复
(
0
)