首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=[a1,a2,…,a2]T≠0,A=ααT,求可逆矩阵P,使P-1AP=Λ.
设α=[a1,a2,…,a2]T≠0,A=ααT,求可逆矩阵P,使P-1AP=Λ.
admin
2018-09-25
46
问题
设α=[a
1
,a
2
,…,a
2
]
T
≠0,A=αα
T
,求可逆矩阵P,使P
-1
AP=Λ.
选项
答案
(1)先求A的特征值. 利用特征值的定义. 设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=α
T
αξ=λξ. (*) 若α
T
ξ=0,6则λξ=0,又ξ≠0,故λ=0; 若α
T
ξ≠0,(*)式两端左边乘α
T
,得α
T
αα
T
ξ=(α
T
α)α
T
ξ=λ(α
T
ξ). 因α
T
ξ≠0,故λ=α
T
α= [*] (2)再求A的对应于λ的特征向量. 因为A=αα
T
,当λ=0时,(λE-A)X=-αα
T
X=0,因为满足α
T
X=0的X必满足αα
T
X=0,故当λ=0时,对应的特征方程是a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0.对应λ=0的n-1个特征向量为 ξ
1
=[a
2
,-a
1
,…,0]
T
, ξ
2
=[
3
,0,-a
1
,0]
T
, …… ξ
n-1
=[a
n
,0,0,…,-a
1
]
T
. 当λ=[*]=α
T
α时,对矩阵λE-A=α
T
αE-αα
T
两端右边乘α,得 (λE-A)α=(α
T
αE-αα
T
)α=(α
T
α)α-α(α
T
α)=0, 故知α=[a
1
,a
2
,…,a
n
]
T
即是所求ξ
n
. (3)最后由ξ
1
,ξ
2
,…,ξ
n
,得可逆矩阵P. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pig4777K
0
考研数学一
相关试题推荐
求下列旋转体的体积V:(Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体;(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
求星形线L:(a>0)所围区域的面积A.
随机变量X在上服从均匀分布,令Y=sinX,求随机变量Y的概率密度.
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求解下列方程:(Ⅰ)求方程xy″=y′lny′的通解;(Ⅱ)求yy″=2(y′2-y′)满足初始条件y(0)=1,y′(0)=2的特解.
(I)试证明:当0<x<π时,-sinx(Ⅱ)求级数的和.
设A,B均为n阶实对称矩阵,则A与B合同的充分必要条件是().
设n阶方阵A、B相似,A2=2E,则行列式|AB+A-B-E|=_______。
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
随机试题
凡是有关经济社会发展和人民群众切身利益的事项,都要进行合法性、合理性、可行性和可控性评估。()
某县检察机关以抢夺罪对被告人柳桌提起公诉。县人民法院经过审理判处柳某有期徒刑3年。宣判后,柳某表示悔罪服判,决不上诉,出庭支持公诉的检察人员也表示法院判决结果合理合法,检察机关不会抗诉。问题:(1)就本案而言,法院是否可以在宣判后就将柳某送交监狱服刑,为什
依据《建设工程安全生产管理条例》规定,下列关于设计单位的安全责任不正确的是( )。
施工图预算的审查方法包括()。
基金信息披露的及时性原则要求以最快的速度公开信息,在重大事件发生之日起()日内披露临时报告。
在()中,使用当前及历史价格对未来进行预测将是徒劳的。
A公司现销方式每年可销售产品800000件,单价1元,变动成本率为70%,固定成本为120000元,该公司尚有30%的剩余生产能力。为了扩大销售,该公司拟改用赊销政策,信用政策准备调整为“3/0,2/30,N/60”。有关部门预测,年销售量可增至10000
资本资产定价模型的目的是()。
《蒙娜丽莎》《最后的晚餐》是画家()的著名绘画作品。
下图所示的数据模型属于
最新回复
(
0
)