首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中α1,α2,α3线性无关,每个βi都是与α1,α2,α3都正交的非零向量.则r(β1,β2,β3,β4)=
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中α1,α2,α3线性无关,每个βi都是与α1,α2,α3都正交的非零向量.则r(β1,β2,β3,β4)=
admin
2016-07-20
52
问题
已知向量组α
1
,α
2
,α
3
和β
1
,β
2
,β
3
,β
4
都是4维实向量,其中α
1
,α
2
,α
3
线性无关,每个β
i
都是与α
1
,α
2
,α
3
都正交的非零向量.则r(β
1
,β
2
,β
3
,β
4
)=
选项
A、1.
B、2.
C、3.
D、4.
答案
A
解析
构造矩阵A=(α
1
,α
2
,α
3
),则β
i
都是与α
1
,α
2
,α
3
正交说明β
i
都是4元方程组A
T
χ=0的解.再由α
1
,α
2
,α
3
线性无关,得r(A
T
)=r(A)=3,于是A
T
χ=0的解集合的秩为1,从而r(β
1
,β
2
,β
3
,β
4
)=1.
转载请注明原文地址:https://kaotiyun.com/show/q0w4777K
0
考研数学一
相关试题推荐
设an=|sinnx|dx(n>),则=()
设曲线y=f(x)由确定,则曲线在t=0对应点处的曲率为________
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设D是以(1,1),(-1,1)为顶点的三角形区域,D1是D在第一象限的部分,且f(x,y)-xy+(x,y)dxdy,其中f(x,y)在D上连续,则()
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组(A*B*)=0基础解的个数为()
设矩阵A=与对角矩阵A相似求可逆矩阵P及对角矩阵A,使得P﹣1AP=A;
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系还可表示成().
设A为n×m矩阵且r(A)=n(n<m),则下列结论中正确的是().
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
随机试题
国际法的基本特点。
叩诊确定肝上界时体表标志是
既是抗原呈递细胞,又是免疫应答细胞的是可以杀伤肿瘤细胞无需MHC限制性的是
投资项目社会评价中韵互适性分析主要是考察项目与当地社会环境的相互适应关系,互适性分析内容包括()
人们常说“一寸光阴一寸金,寸金难买寸光阴”,这说明了()。
已知直线l的斜率为1/6,且和两坐标轴围成面积为3的三角形,则l的方程为().
1919年5月爆发的五四运动具备了哪些新的历史特点,使之成为中国革命的新阶段即成为新民主主义革命阶段的开端的()
Withunfamiliarhumanbeings,whenweacknowledgetheirhumanness,wemustavoidstaringatthem,andyetwemustalsoavoidign
Accordingtothelecture,whatis"bartering"?
Thefunnythingabouthowabankworksisthatitfunctionsbecauseofourtrust.Wegiveabankourmoneytokeepitsafeforu
最新回复
(
0
)