首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,﹢∞)上连续,下述命题: ①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数; ②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则F(X)必是偶函数; ③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
设f(x)在(-∞,﹢∞)上连续,下述命题: ①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数; ②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则F(X)必是偶函数; ③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
admin
2018-12-21
58
问题
设f(x)在(-∞,﹢∞)上连续,下述命题:
①若对任意a,∫
-a
a
f(x)dx=0,则f(x)必是奇函数;
②若对任意a,∫
-a
a
f(x)dx=2∫
0
a
f(x)dx,则F(X)必是偶函数;
③若f(x)为周期为T的奇函数,则F(x)=∫
0
x
f(t)dt也具有周期T.
正确的个数是 ( )
选项
A、0
B、1.
C、2.
D、3.
答案
D
解析
①是正确的.记F(a)=∫
-a
a
f(x)dx,有F
’
(a)=f(a)﹢f(-a).
由于F(a)=0,所以F
’
(a)
,即f(a)=-f(-a),f(x)为奇函数.
②是正确的.记F(a)=∫
-a
a
f(x)dx-2∫
0
a
f(x)dx,F
’
(a)=f(a)﹢f(-a)-2f(a)0,所以f(-a)=
f(a),f(x)为偶函数.
③是正确的. F(x﹢T)-F(x)=∫
0
x﹢T
f(t)dt-∫
0
x
f(t)df=∫
x0
x﹢T
f(t)dt
=∫
0
T
f(t)dt=f(t)dt=0,
所以F(x)具有周期T故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/qAj4777K
0
考研数学二
相关试题推荐
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(2002年)矩阵A=的非零特征值是_______.
(2007年)设矩阵,则A与B【】
(2002年)设y=y(χ)是二阶常系数微分方程y〞+py′+qy=e3χ满足初始条件y(0)=y′(0)=0的特解,则当χ→0时,函数的极限.【】
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
如图8.12所示.[*]原式=[*]
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
已知的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),
[*]由于因此原式=eln2/2=
随机试题
地址码长度为二进制24位时,其寻址范围是____________MB。
反转恢复脉冲序列,施加的第一个脉冲是
义齿修复前常需进行牙槽骨修整的部位,不包括
工程项目实施阶段包括( )等阶段性工作。
下列描述错误的是()。
社会治安综合治理的目标是单—的,即减少社会犯罪。()
根据我国《行政许可法》,下列说法不正确的是()。
对文中有关戈德史密特和弗雷德里克两人观点的陈述,正确的一项是:文中划线的句子,对其复句关系分析正确的一项是:
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
某系统中有四种互斥资源R1、R2、R3和R4,可用资源数分别为3、5、6和8。假设在T0时刻有P1、P2、P3和P4四个进程,并且这些进程对资源的最大需求量和已分配资源数如表5-6所示,那么在T0时刻系统中R1、R2、R3和R4的剩余资源数分别为(20)。
最新回复
(
0
)