首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2017-09-15
62
问题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故r(2E-A)=1, 而2E-A=[*] 所以χ=2,y=-2. 由|λE-A|=[*]=(λ-2)
2
(λ-6)=0得λ
1
=λ
2
=2,λ
3
=6 由(2E-A)X=0得λ=2对应的线性无关的特征向量为 [*] 由(6E-A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] 令P=[*],则有P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qBk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
已知的一个特征向量.(1)试确定参数a,b及特征向量考所对应的特征值;(2)问A能否相似于对角阵?说明理由.
随机试题
阅读下列案例,并回答问题。年轻的黄老师每次教完生字后,总是让学生回去把每个生字抄10遍,准备第二天听写,但学生的生字听写成绩总是不理想。黄老师想,肯定是抄写不够,又让学生每个生字抄20遍甚至30遍,但学生的听写成绩仍没有明显提高。黄老师逐渐意识到,学生学习
下列哪项属于子宫内膜的周期性变化
可确诊慢性淋巴细胞白血病的方法是
(抗高血压药物)A、缬沙坦B、吲达帕胺C、美托洛尔D、尼卡地平E、赖诺普利属于血管紧张素转换酶抑制剂的是
2014年下半年,实行标准工时制的甲公司在劳动用工方面发生下列事实:(1)9月5日已累计工作6年且本年度从未请假的杨某向公司提出年休假申请。(2)因工作需要,公司安排范某在国庆期间加班4天,其中占用法定休假日3天,占用周末休息日1天。范某日工资为200
在小学教学评价中,衡量学校办学水平的关键指标是()。
货币制度(浙江财经大学2012真题;东南大学2012真题;华南理工大学2011真题)
Ifyouweretoexaminethebirthcertificatesofeverysoccerplayerin2006’sWorldCuptournament,youwouldmostlikelyfind
Readfivestudents’talksabouttravelingaroundEuropeusinganInter-Railticket.Theticketallowspeopleundertheageoft
Thefactthattheworld’scitiesaregettingmoreandmorecrowdedisawell-documenteddemographicfact.CitiessuchasTokyo
最新回复
(
0
)