首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶矩阵,求A的特征值和特征向量。
n阶矩阵,求A的特征值和特征向量。
admin
2019-07-22
54
问题
n阶矩阵
,求A的特征值和特征向量。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=[λ一1一(n一1)b][λ一(1—b)]
n—1
, 则A的特征值为1+(n一1)b和1—b(n一1重)。 ①当b=0时,A的特征值是1(n重),任意n维非零列向量均为A的特征向量。 ②当b≠0时,对方程组{[1+(n一1)]bE—A}x=0的系数矩阵作初等行变换得 [*] 解得上述方程组的基础解系为ξ
1
=(1,1,1,…,1)
T
。所以A的属于λ=1+(n一1)b的全部特征向量为 kξ
1
=k(1,1,1,…,1)
T
,k≠0。 对方程组[(1一b)E—A]x=0的系数矩阵作初等行变换得 [*] 解得上述方程组的基础解系为 ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
, 所以A的属于λ=1一b的全部特征向量为 k
2
ξ
2
+ k
3
ξ
3
+…+ k
n
ξ
n
,其中k
2
,k
3
,…,k
n
是不全为零的常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/qGN4777K
0
考研数学二
相关试题推荐
A、(n+1)anB、nanC、(n+1)aD、naA
设α1,α2,α3,β1,β2均为四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,(β1+β2)|=()
设向量组α1,α2,…,αs为齐次线性方程组AX一0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设函数f(χ)和g(χ)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(χ)<0’试证明存在ξ∈(a,b)使=0.
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
求下列极限:
设f(x)=在点x=0处连续,则常数a=________.
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)