设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使

admin2020-07-31  37

问题 设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使

选项

答案令φ(x)=f(x)∫xbg(t)dt+g(x)∫axf(t)dt,显然函数φ(x)在区间[a,b)]上连续,函数φ(x)在区间(a,b)内可导,且 φ’(x)=[f’(x)∫xbg(t)dt-f(x)g(x)]+[g(x)f(x)+g’(x)∫axf(t)dt] =f’(x)∫xbg(t)dt+g’(x)∫axf(t)dt, 另外又有φ(a)=φ(b)=0. 所以根据罗尔定理可知存在ξ∈(a,b)使φ’(ξ)=0,即 f’(ξ)∫ξbg(t)dt+g’(ξ)∫aξf(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0,从而就有∫ξbg(t)dt>0, 于是有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/qL84777K
0

最新回复(0)