首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a); (Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且 f’(x)=A,则f+’(0)
admin
2019-07-22
87
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);
(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’(0)存在,且f
+
’(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*],易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)一f(a)=f’(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
) [*] (0,δ),使得 [*] 又由于[*],对(*)式两边取x
0
→0
+
时的极限 [*] 故f’
+
(0)存在,且f’
+
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/qLN4777K
0
考研数学二
相关试题推荐
求常数a,b使得f(χ)=在χ=0处可导.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x=()
设A为n阶矩阵,且|A|=0,则A().
设A,B为n阶矩阵,则下列结论正确的是().
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
求微分方程χy〞+3y′=0的通解.
微分方程χy′-y[ln(χy)-1]=0的通解为_______.
设u=f(z),其中z是由z=y+χφ(z)确定的z,y的函数,其中f(z)与φ(z)为可微函数.证明:
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
随机试题
人们常常说的“多多益善”,从经济学的角度来说,是指随着所消费的商品数量增多,()。
患者,男性,64岁。体重60kg,腹痛、腹泻伴发热3天。既往体健。查体:体温38.5℃,血压80/50mmHg,心率130次/分,呼吸30次/分,全身无水肿。血常规:白细胞15.0×109/L,中性粒细胞85%,血红蛋白130g/L,血小板60×109/L
A.呼吸表浅B.情绪不稳定C.步态不稳D.记忆力严重丧失E.头晕、乏力急性酒精中毒兴奋期
A.具有喹啉羧酸结构的药物B.具有咪唑结构的药物C.具有双三氮唑结构的药物D.具有单三氮唑结构的药物E.具有鸟嘌呤结构的药物利巴韦林是
全肺切除术后患者,正确的护理措施是
下列有关和解协议效力的表述中,符合新颁布的企业破产法规定的有()。
毛泽东在《中国社会各阶级的分析》中,对中国民族资产阶级的分析是
Thenewsaboutvitaminskeepsgettingworse.Manystudiespublishedinthelastfewyearsshowsthatavarietyofpopularsupple
一个关系表的行称为【 】。
三亜の海水浴場は、約500メートル________、美しい砂浜が続いています。
最新回复
(
0
)