设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.

admin2019-07-19  11

问题 设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.

选项

答案方法一 ∫0kf(x)dx-k∫01f(x)dx=∫0kf(x)dx-k[∫0kf(x)dx+∫k1f(x)dx] =(1一k)∫0kf(x)dx—k∫k1f(x)dx=k(1一k)[f(ξ1)一f(ξ2)] 其中ξ1∈[0,k],ξ2∈[k,1],因为0<k<1且f(x)单调减少, 所以∫0kf(x)dx—k∫01f(x)dx=k(1一k)[f(ξ1)一f(ξ2)]≥0,故∫0kf(x)dx≥k∫01f(x)dx. 方法二 ∫0kf(x)dx[*]k∫01f(kt)dt=k∫01f(kx)dx,当x∈[0.1]时,因为0<k<1,所以kx≤x, 又因为f(x)单调减少,所以f(kx)≥f(x),两边积分得∫01f(kx)dx≥∫01f(x)dx, 故k∫01f(kx)dx≥k∫01f(x)dx,即∫0kf(x)dx≥k∫01f(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/qNc4777K
0

最新回复(0)