首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换y=u/cosx将方程y"cosx-2y’sinx+3ysinx=ex化简,并求出原方程的通解。
利用代换y=u/cosx将方程y"cosx-2y’sinx+3ysinx=ex化简,并求出原方程的通解。
admin
2018-04-14
61
问题
利用代换y=u/cosx将方程y"cosx-2y’sinx+3ysinx=e
x
化简,并求出原方程的通解。
选项
答案
方法一:由y=u/cosx=usecx,有 y’=u’secx+usecxtanx, y"=u"secx+2u’secxtanx+u(secxtan
2
x+sec
3
x), 代入原方程y"cosx-2y’sinx+3ycosx=e
x
,得 u"+4u=e
x
。(*) 先求其相应齐次方程的通解,由于其特征方程为λ
2
+4=0,则特征方程的根为λ=±2i。所以通解为 [*](x)=C
1
cos2x+C
2
sin2x(C
1
,C
2
为任意常数)。 再求非齐次方程的特解,特解应具有形式u
*
(x)=Ae
x
,代入(*)式,得 (Ae
x
)"+4Ae
x
=Ae
x
+4Ae
x
=5Ae
x
=e
x
, 解得,A=1/5,因此u
*
(x)=1/5e
x
。 故(*)的通解为 u(x)=C
1
cos2x+C
2
sin2x+[*]e
x
(C
1
,C
2
为任意常数)。 所以,原微分方程的通解为 y=C
1
[*],其中C
1
,C
2
为任意常数。 方法二:由y=u/cosx有u=ycosx,于是 u’=ycosx-ycosx, u"=y"cosx-2y’cosx-ycosx, 原方程化为u"+4u=e
x
(以下与方法一相同)。
解析
转载请注明原文地址:https://kaotiyun.com/show/qRk4777K
0
考研数学二
相关试题推荐
[*][*]
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
f(x)连续,且f(0)≠0,求极限
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在z=1处取得极值g(1)=1.求
设二元函数z=xex+y+(x+1)ln(1+y),求dz|(1,0)。
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x2x2-5x3x2+2x1x2-2x1x3+2x2x3.
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
随机试题
接收到的(偶性)汉明码为1001101B,其中的信息为()。
下列关于微动脉的描述,错误的是
骨质疏松症最常见的症状是
A.磺酰脲类B.双胍类C.α-葡萄糖苷酶抑制剂类D.噻唑烷二酮类E.胰岛素衍生物类格列齐特
玉竹粉碎一般采用
围护结构热桥部分的温度值如果()的露点温度,会造成表面结露。
【2015年济南市真题】儿童认识到客体尽管在外形上发生了变化,但其特有的属性不变,这说明儿童的认知发展进入具体运算阶段。()
1931年1月至1935年1月,以王明为代表的“左”倾错误给中国革命带来严重危害,主要错误有()
有以下程序:#include<stdio.h>unsignedfun(unsignednum){unsignedk=1;do{k*=num%10;num/=10;}while(num);
A、Theymakehimfeelgood.B、Theymakenoimpactonhim.C、Theyborehim.D、Theymakehimangry.A[听力原文]HowdoesprofessorHawl
最新回复
(
0
)