首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵β的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵β的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2017-01-14
39
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵β的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
, 即α
1
是矩阵β的属于特征值-2的特征向量。 由关系式B=A
5
-4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的三个特征值为μ
1
=-2,μ
2
=1,μ
3
=1。 设α
1
,α
2
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即[*]。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为 [*] B的全部特征向量为k
1
[*],其中k
1
≠0,k
2
,k
3
不同时为零。 (Ⅱ)令P=(α
1
,α
2
,α
3
)=[*],于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qWu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
证明下列函数是有界函数:
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
试证明函数f(x)=(1+1/x)x在区间(0,+∞)内单调增加.
随机试题
大失血所致的气脱,称为
压片时可因以下哪些因素而造成片重差异超限
保证水位是指保证江河、湖泊、水库在汛期安全运用的()。
中国证监会在对甲上市公司(以下简称“甲公司”)进行例行检查中,发现以下事实:(1)2006年2月,甲公司拟为控股股东A企业2000万元的银行贷款提供担保。甲公司股东大会对该项担保进行表决时,出席股东大会的股东所持的表决权总数为15000万股,其中包
五台山是我国唯一兼有汉地佛教和藏传佛教道场的佛教圣地。()
一般资料:求助者,男性,17岁,高中二年级学生。案例介绍:求助者有一次上课迟到,着急跑向自己的座位,不小心被绊倒并摔到一位女同学的身上,顿时引起同学哄堂大笑,事后还有人取笑他。此后每次到教室时就会紧张焦虑,觉得同学看不起他。常常会用力抓自己的头发
现代学制最早出现在()。
在唐德斯(F.C.Donders)ABC戋法反应时实验中,B反应时代表的是()
Duringrecentyearswehaveheardmuchabout"race":howthisracedoescertainthingsandthatracebelievescertainthingsand
—I’mgoingtoseeJanethisafternoon.—Don’tforget______hellotoherforme.
最新回复
(
0
)