首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
admin
2019-03-25
70
问题
假设二维随机变量(X,Y)在区域D={(x,y):0<x<1,∣y∣<x}上服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差。
选项
答案
根据均匀分布的定义,(X,Y)的联合概率密度为 f(x,y)=[*] 因此X的边缘概率密度函数为 f
X
(x)=∫
-∞
+∞
f(x,y)dy=[*] 则有 E(X)=∫
-∞
+∞
xf
X
(x)dx=∫
0
1
x.2xdx=[*], E(X
2
)=∫
-∞
+∞
x
2
f
X
(x)dx=∫
0
1
x
2
.2xdx=[*], D(X)=E(X
2
)一[E(X)]
2
=[*] 故 D(Z)=D(2X+1)=4D(X)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qX04777K
0
考研数学一
相关试题推荐
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0,试证:这三条直线交于一点的充分必要条件为a+b+c=0。
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=()
(2002年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)。记(I)证明曲线积分I与路径L无关;(Ⅱ)当ab=cd时,求I的值。
(2006年)设f(x,y)为连续函数,则等于()
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f
(2010年)求幂级数的收敛域及和函数。
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),f(x1,x2,x3)在正交变换x=Qy下的标准形为()
设随机变量X服从参数为1的泊松分布,则P{X=E(X2)}=________。
设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{X<Y}=()
设总体X的概率分布为其中θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3,使T=aiNi为θ的无偏估计量,并求T的方差。
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)