设,X是2阶方阵. (Ⅰ)求满足AX-XA=0的所有X; (Ⅱ)方程AX-XA=B是否有解.若有解,求满足方程的所有X,若无解,说明理由.

admin2019-01-24  23

问题,X是2阶方阵.
(Ⅰ)求满足AX-XA=0的所有X;
(Ⅱ)方程AX-XA=B是否有解.若有解,求满足方程的所有X,若无解,说明理由.

选项

答案(Ⅰ)用待定元素法求X设X=[*],代入方程,则 [*] 各元素为零,得齐次线性方程组[*]记作Cx=0. 对系数矩阵C作初等行变换,有 [*] 解得方程组基础解系为α1=(2,2,1,0)T,α2=(1,0,0,1)T, 所以方程组的通解为[*],其中k1,k2是任意常数. 故[*],其中k1,k2是任意常数. (Ⅱ)设[*] 得非齐次线性方程组[*]记作Dx=b,对方程组的增广矩阵作初等行变换,得 [*] 由上可知,r(D)=2≠[*]=3,故方程组无解.所以所求方程无解.

解析
转载请注明原文地址:https://kaotiyun.com/show/rSM4777K
0

最新回复(0)