首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
在一棵二叉树中,度为O的结点个数与度为2的结点个数和度数之间有什么关系?在一棵完全二叉树中,如果共有200个结点,则能判断出叶结点的个数吗?如果能,请指出会有多少个叶结点,多少个度为2的结点?多少个度为1的结点?如果有201个结点呢?
在一棵二叉树中,度为O的结点个数与度为2的结点个数和度数之间有什么关系?在一棵完全二叉树中,如果共有200个结点,则能判断出叶结点的个数吗?如果能,请指出会有多少个叶结点,多少个度为2的结点?多少个度为1的结点?如果有201个结点呢?
admin
2010-04-24
85
问题
在一棵二叉树中,度为O的结点个数与度为2的结点个数和度数之间有什么关系?在一棵完全二叉树中,如果共有200个结点,则能判断出叶结点的个数吗?如果能,请指出会有多少个叶结点,多少个度为2的结点?多少个度为1的结点?如果有201个结点呢?
选项
答案
在一棵二叉树中,度数为0的结点(叶结点)的个数总是比度为2的结点的个数多1。根据完全二叉树的定义:若一棵二叉树至多只有最下面的两层上结点的度数可以小于2,并且最下一层上的结点都集中在该层最左边的若干住置上,则我们可以得出这样一个结论:在一棵完全二叉树上,或者没有度为1的结点。则根据以上分析,我们可以这样计算此题:设度数为2的结点有n个,则必有n+1个度为0的结点,即度数为2和度数为0的结点数之和为2n+1(是奇数),于是得出,如果一棵完全二叉树的结点总数为奇数,则此树中必然不存在度为1的结点,若完全二叉树中结点总数为偶数,则必然有1个度为1的结点存在,于是若完全二叉树中有200个结点,就必有100个对结点,99个度数为2的结点,12个度数为1的结点,如果二叉树中有201个结点,则必有101个叶结点,100个度数为2的结点,没有度数为1的结点。
解析
转载请注明原文地址:https://kaotiyun.com/show/rgAx777K
本试题收录于:
数据结构题库理工类分类
0
数据结构
理工类
相关试题推荐
OSI参考模型从上到下的层次依次为()
下列不属于混合形拓扑的优点的是()
____________是指商业银行发行的、本金和利息的清偿顺序列于商业银行其他负债之后、先于商业银行股权资本的债券。
根据财富持有者的货币需求函数可知下列哪些因素会影响货币的实际需求量?()
凯恩斯对货币需求理论的突出贡献在于他对货币需求动机的剖析在此基础上,把什么引入了货币需求函数?()
对长度为20的有序表进行二分查找,试画出它的一棵判定树。
设要将序列(Q,H,C,Y,P,A,M,S,R)按字母升序排序,请分别画出采用堆排序方法时建立的初始堆,以及第一次输出堆顶元素后经过筛选调整的堆的完全二叉树形态。
用散列函数求元素在散列表中的存储位置时,可能会出现不同的关键字得到相同散列函数值的冲突现象。可用于解决上述问题的是_______。
逻辑结构与存储结构是什么关系?
线性表若采用链式存储结构时,要求内存中可用存储单元的地址_______。
随机试题
内地居民同香港居民、澳门居民、台湾居民、华侨在中国内地自愿离婚的,当事人有下列哪些情形的,婚姻登记机关不予受理?()
错误选项为:C;正确写法为:VESSEL:GLORIAV.123DATEDAPRIL30,2004根据UCP600第20条,当提单上显示从起运港的船只是预期(INTENDED)船时,即使预期船只与实际装运船只一致,提单的装船批注(ONBOARD
对于商用房贷款抵押物,以下说法错误的是()。
以下关于可转换债券的说法中,正确的有()。(2004年)
材料:初二(3)班的汤老师在辅导学生上晚自习时因私事偷偷外出,快放学的时候才回来。他回来时发现小李正在偷偷写情书,为了让其他同学引以为戒,汤老师将小李的情书在班上念了出来,引得全班哄堂大笑。小李觉得没面子,请假回家休息了。班上的小敏喜欢
某次考试有一道多项选择题,共有A、B、C三个选项。参加考试的人中,共有20人选了A,15人选了B,10人选了C。其中选了两个选项的有5人,选了三个选项的有3人,还有2人未答此题。问有多少人参加考试?
马斯洛的需要层次理论中的最高层次是()。
Ayoungmangoingtojointhearmy(军队)andhadto【C1】________amedicalexamination.Thedoctorwassittingatadeskwhenhec
Whatrecommendationsdoesthetutormakeaboutthereferencebooks?AAllBResearchmethodCMainBodyDConclusionE
Tobereallyhappyandreallysafe,oneoughttohaveatleasttwoorthreehobbies,andtheymustallbereal.Itdoesn’tmatte
最新回复
(
0
)