首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
教学设计。阅读下述材料回答问题。 在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有
admin
2018-06-07
41
问题
教学设计。阅读下述材料回答问题。
在学习了等比数列前n项和公式后,数学老师李老师给大家留了一道思考题:“你能把无限循环小数化成分数吗?你用的什么方法,用具体的例子说明。”李老师将这个问题留作作业,让大家写一个小的总结。有的同学表示,第一次做这样的作业,没有具体的题目,不知道如何下手。还有的同学觉得老师留的问题不够具体,不知道写到什么程度。
问题:
李老师在批阅了大家的作业后,要针对学生的作答情况在课堂上做一个总结,请以“把无限循环小数化成分数”为教学内容帮李老师设计一个教学片段。
选项
答案
教学片段 师:大家的作业我看了,大部分同学做得很好,下面我们一起来看一下这个问题。把无限循环小数化成分数,我没有给出具体哪个无限不循环小数,大家看到题首先要思考,什么样的小数是无限循环小数,它是怎么化成分数的。那么什么样的小数是无限循环小数呢? 生:小数点后有重复出现的数字。 师:不够严谨,应该是从小数点后某一位开始不断地重复出现前一个或一节数码的十进制无限小数。比如:0.3333…,0.142857142857142857…,0.7,0.753等等。 师:很多同学解决这个问题的时候想到了我们刚刚学过的等比数列前n项和公式,能利用这个知识来解决问题。要表扬大家,很棒。下面我请一位同学说一下用这种方法的思路。小贾,你来说。 小贾:我是求的0.7这个数的分数形式,我把这个循环小数看成了一些小数的和,它可以是 0.7=0,7+0.07+0.007+0.0007+…=7×0.1+7×0.01+7×0.001+7×0.0001+… =7×(0.1+0.01+0.001+0.0001+…), 后边就变成了等比数列前n项求和了,这个等比数列的首项是0.1,公比是0.1,那么0.1+0.01+0.001+0.0001+… [*] 师:很好,思路很清晰。把隐藏在循环小数里的等比数列求和问题挖掘出来,有一部分同学是这么做的。整个过程中运用了化归转化思想,极限思想。 师:我看到,还有一些同学有其他解法。小马,你来说说你的做法。 小马:我是求的[*]这个数的分数形式。设[*]=x,即x=0.555…,则10x=5.555…,所以10x一x=5,得x=[*]。 即,[*]。 师:这个方法不错,我随便写一个循环小数你能把它化成分数吗?来,算算[*]的分数形式。大家用小马刚才说的做法也试着算算。 小马:老师,我就现场算吧。设[*]=x,也就是x=0.753753753…,则1000x=753.753753753…,所以1000x—x=753,得 [*] 师:看来你对这种做法已经很熟悉了。大家发现没有,这个方法的巧妙之处在于把重复的小数分别消去了!怎么消去的呢? 生:把原来的数扩大了。 师:扩大了多少倍。 生:…… 师:其实这种做法也是和等比数列有关的,小马在求[*]的分数形式的时候是将原来的数扩大了10倍,而求[*]的分数形式的时候是将原来的数扩大了1000倍。这其中有什么道理吗? 小马:[*]=0.5+0.05+0.005+0.0005+…=5×0.1+5×0.01+5×0.001+5×0.0001+…=5×(0.1+0.01+0.001+0.0001+…),对应的等比数列的公比是0.1,所以在计算[*]的分数形式的时候是将原来的扩大了10倍。[*]对应的那个等比数列的公比是0.001,所以在计算的时候将原来的扩大了1000倍。 (大部分学生都明白其中的道理了) 师:很好,大家都明白了吧。我现在想问大家,把原来的数扩大多少倍后再和原来的式子作差,这种方法我们接触过吗? (预设)个别学生:刚刚就见过。在推导等比数列前n项和的时候就是这么推导的。前两天刚讲过,叫错位相减法。 师:很好!看来有的同学发现了,这就是在推导等比数列前n项和时用到的错位相减法。 师:小贾同学的做法是把循环小数转化成等比数列求和问题,再利用等比数列前n项和公式直接计算。小马同学的做法是巧妙地利用循环小数本身的特点,用错位相减法解决了问题。两种办法都很好,大家要把这两种方法都学会。这个问题我们课堂上就讨论这两种方法,同学课下再相互交流一下还有没有其他的做法。
解析
转载请注明原文地址:https://kaotiyun.com/show/rwtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
材料:下面是一位教师设计的关于“竞争与合作”的主题教学简案。请根据这一简案,运用思想品德课程与教学理论相关知识,简述教学环节一、二、三、五的设计意图。
王某,17岁,高中毕业后依靠到外地工厂打工为生。从民事能力分类来讲,王某属于()。
截止2017年底,中国的海外投资超过2000亿美元,而其中一大部分投向欧洲。中国的海外投资结构在发生变化,从原来在非洲发展中国家中寻找自然资源转移到获取发达国家的品牌和技术。“中国设计、欧洲制造”成为新的合作模式。这说明我国()。①着力培养开放型
一般情况下,银行利率提高,股市会做出股票价格下降的反应。对于产生这一反应的合理解释是()。①银行业利润高于其他行业②投资者改变投资组合③投资者预期企业利润下降④股民的投资收益减少
王老师是一名初中思想品德课新任教师,他无论讲授什么内容均采用温故知新的导入方式。王老师的授课违背了思想品德课课堂导入的哪一项原则?()
近年来,国务院持续推动“简政放权”,这一举措()。①有利于市场在资源配置中起决定性作用②能够使政府工作更好地为经济和社会发展服务③能够使生产关系更好地适应生产力发展的要求④有利于完善行政管理体制,减轻政府的行政责任
国家将在个税方面进一步改革,有望建立综合与分类相结合的个人所得税制,将工资薪金、劳务报酬等统一纳入综合范围征税。此外,养老、二孩、房贷利息等家庭负担也有望纳入抵扣。个人所得税税制改革旨在()。①区别对待不同性质的收入,保障城乡居民基本生活
漫画《职责范围》给我们的启示是()。①要树立全局意识和集体主义的价值取向②矛盾具有客观性,要正视和解决矛盾③任何两个事物之间都是相互联系的④价值观对人们的行为有导向作用
欧式平面R2上的下列变换不是保距变换的是()。
在空间直角坐标系下,试判断直线l:与平面π:3x—y+—2z+1=0的位置关系,并求出直线l与平面π的夹角的正弦值。
随机试题
把工资定义为“工资是指无论名称或计算方式如何,由一位雇主对一位受雇者,为其已完成或将要完成的工作或已提供或将要提供的服务,以货币结算并由共同协议或国家法律或条例予以确定,而凭书面或口头雇用合同支付的报酬或收入”的法律或公约是_________。
下列不能作为股权资本来源的是
患者,男,25岁。右腹股沟区可复性包块2年。查体:肿块还纳后,压迫内环口肿物不再复出,无压痛。手术中最有可能发现的是()
下列药物属于ACEI的是
"州都之官"指的是"决渎之官"指的是
下列关于使馆及其外交人员的特权与豁免的说法正确的是哪项?()
为了更进一步提高公司的竞争力,某服装公司从法国招聘了一位新的总经理。由于这名新的总经理不太了解中国人处理人际关系的实际情况,所以和下级及员工相处不太和睦。一年过去了,公司没有新的起色,公司董事会在总经理关于本企业的绩效问题上发生了争议。要想使该公司在新
(2002年真题)审读与加工是编辑工作中的两个重要环节。为了保证出版物的质量,必须注意()。
简述行政裁决与行政仲裁的关系。
Thepromiseoffindinglong-termtechnologicalsolutionstotheproblemofworldfoodshortagesseemsdifficulttofulfillMany
最新回复
(
0
)