首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列三个命题 ①设的收敛域为(-R,R),则,的收敛域为(-R,R); ②设幂级数在χ=-1条件收敛,则它的收敛半径R=1。 ③设幂级数的收敛半径分别为R1,R2,则(an+bn)χn的收敛半径R=min(R1,R2)中正确的个数是
下列三个命题 ①设的收敛域为(-R,R),则,的收敛域为(-R,R); ②设幂级数在χ=-1条件收敛,则它的收敛半径R=1。 ③设幂级数的收敛半径分别为R1,R2,则(an+bn)χn的收敛半径R=min(R1,R2)中正确的个数是
admin
2016-07-20
101
问题
下列三个命题
①设
的收敛域为(-R,R),则,
的收敛域为(-R,R);
②设幂级数
在χ=-1条件收敛,则它的收敛半径R=1。
③设幂级数
的收敛半径分别为R
1
,R
2
,则
(a
n
+b
n
)χ
n
的收敛半径R=min(R
1
,R
2
)中正确的个数是
选项
A、0个.
B、1个.
C、2个.
D、3个.
答案
B
解析
关于命题①:对幂级数
a
n
χ
n
,逐项积分保持收敛区间不变,但收敛域可能起变化.如
χ
n
的收敛域为(-1,1),但
的收敛域是[-1,1).
关于命题②:若熟悉幂级数的收敛性特点立即可知该命题正确.
记该幂级数的收敛半径为R.若R>1,由于
χ,|χ|<R,
a
n
χ
n
绝对收敛
a
n
(-1)
n
绝对收敛,与已知矛盾.若R<1,由
χ,|χ|>R,
a
n
χ
n
发散
a
n
(-1)
n
发散,也与已知矛盾.因此,R=1.
关于命题③:当R
1
≠R
2
时,R=min(R
1
,R
2
),于是要考察R
1
=R
2
的情形.
设有级数,
,易求得它们的收敛半径均为R
1
=R
2
=1.但
的收敛半径为R=2.因此命题不正确.
综上所述,应选B.
转载请注明原文地址:https://kaotiyun.com/show/s0w4777K
0
考研数学一
相关试题推荐
=________.
=________.
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
设函数f(x)在(-∞,﹢∞)内有定义,且对任意x,y,有f(x+y)-f(x)=[f(x)-1]y+a(y),其中=0,f(0)=2,则f(1)=()
求展为x-2的幂级数,并指出其收敛域.
设f(x)为连续函数,将逐次积分∫01dx∫0xdy∫0yf(z)dz化成定积分的形式为________.
设某厂商生产某种产品,其产量与人们对该产品的需求量Q相同,价格为P,试利用边际收益与需求价格弹性之间的关系解释|Ep|<1时,价格的变动对总收益的影响.
设f(x)是[0,+∞)上的单调减少函数,证明:对任何满足λ+μ=1的正数λ,μ及x∈[0,+∞)有下列不等式成立:f(x)≤λf(λx)+μf(μx);
观察知道,此题为“0/0”型.但不能用洛必达法则求解.应该以去掉分子中的模符号“||”为化简方向.
随机试题
小儿结核型脑膜炎常引起颅神经损害,但不包括
如图所示,均质鼓轮A和圆盘B质量均为m,半径均为R,物体C质量也为m。若物体C上升时的速度为v,则系统对A点的动量矩为()。
下列耐火材料中,属于高级耐火材料的是()。
建设工程定额按编制程序和用途分类,可以分为()。
简述政府采购的功能。
轴直径的一个n=5的样本观测值(单位:cm)为:15.09,15.29,15.15,15.07,15.21,则样本均值为()。
“余音绕梁,三日不绝”是形容我国战国时期的著名歌唱艺人()的歌声。
以下几种现象中,能够典型表现“注意的集中性”的是()。
抗日战争中,指挥四次长沙会战,阻断日军入侵中国西部的国民党军事将领是()。
財布
最新回复
(
0
)