首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
The Cloning Technology I. The difference between a 【T1】______colony and 【T1】______ cloning a mammal A. Clarify the illusion: sc
The Cloning Technology I. The difference between a 【T1】______colony and 【T1】______ cloning a mammal A. Clarify the illusion: sc
admin
2020-06-04
21
问题
The Cloning Technology
I. The difference between a 【T1】______colony and 【T1】______
cloning a mammal
A. Clarify the illusion: scientists have been cloning
genes for years.
B. Definition of clone: a clone is population of
cells produced by 【T2】______; all the cells in 【T2】______
a clone have exactly the 【T3】______, using 【T3】______
a process known as "recombinant 【T4】______ 【T4】______
technology".
C. Clone a mammal: "nuclear transfer".
II. Genes, chromosomes and the genome
A. Genes
- DNA—its 【T5】______makes it divide 【T5】______
easily.
- 【T6】______of chemical groups within DNA 【T6】______
form genes.
- Genes determine what 【T7】______a given 【T7】______
cell will have.
B. Chromosomes: genes are linked together to form
chromosomes.
C. Genome: the entire collection of chromosomes
in each cell.
D. 【T8】______genes enables scientists 【T8】______
to mass-produce proteins that can be used to
【T9】______.【T9】______
III. The process of cloning a gene
A. Remove DNA from the cell.
B. DNA is cut into pieces using 【T10】______. 【T10】_____
C. To replicate DNA, attach them to non-
mammalian DNA.
D. Plasmids are easily incorporated into 【T11】______ 【T11】______
and multiply by themselves.
E. The plasmid carries the gene into a 【T12】______ 【T12】______
cell.
F. The gene 【T13】______a plasmid and some 【T13】______
proteins.
G. The plasmid 【T14】______. 【T14】______
H. Copies passed to the cell’s 【T15】______. 【T15】______
I. Each cell contains one or more copies of the
recombinant DNA molecule. The gene is now
considered cloned.
【T9】
The Cloning Technology
Today, we are going to talk about the cloning technique. First, we will see the difference between a single cell colony and cloning a mammal. Then we will focus on cell cloning process and its scientific use.
In March 1997, the world said "hello" to Dolly, the first mammal to be cloned from an adult cell. We asked ourselves: Would the world soon be populated with human clones? Did you know that cloning isn’t new? In fact, scientists have been cloning genes for many years in laboratories around the world. Of course, cloning a gene and cloning a whole mammal are quite different in terms of process and product. But just how do you get from a single cell to a clone?
We generally think of cloning as producing a duplicate of something. Scientists, however, usually use the term clone in referring to cells. A clone is population of cells produced by one ancestor. Because of the way cells multiply, all the cells in a clone have exactly the same genetic makeup. Gene cloning uses a process known as "recombinant DNA technology". By contrast, cloning a mammal, such as the sheep Dolly, involves a technology known as "nuclear transfer". Although the end result is the same, the actual processes of gene cloning and mammalian cloning are quite different. But we need to start from the beginning to understand how these complicated and amazing bioengineering technologies evolved.
Now, we will study on what genes, chromosomes, and the genome are.
Within the body of a mammal, tissues are made of cells. Inside each cell is a long molecule called DNA. Its shape enables it to divide easily. Arrangements of chemical groups within DNA form genes. Genes direct cells to produce proteins, and thus determine what function a given cell will have. For example, skin cells produce proteins which are present in skin tissue, and blood cells produce a protein present in blood. Genes essentially tell each cell what type it is. Genes are linked together to form chromosomes. The entire collection of chromosomes in each of your cells is called genome. All the cells in your body contain the same genome. Once you realize that all cells contain the information for making the whole organism, you know that cloning is theoretically possible.
But what makes a skin cell different from a blood cell? The chromosomes within the nucleus of each cell are folded in various ways. Genes that are buried within the chromosomes are inactive, or switched off, while genes on the surface of the chromosomes are active. In a skin cell, the genes for producing skin proteins are active, while in a blood cell, the gene is active. Gene cloning is the process of producing a population of cells all of which contain a specific gene. Using these identical cells, scientists can study the entire genome and obtain clues to how genes are switched on and off.
Cloning genes also enables scientists to mass-produce proteins that can be used to treat a variety of diseases. For example, the cells in the pancreas produce a protein called insulin which is important in helping the body maintain appropriate blood sugar levels. Some people have a disease called diabetes because their cells don’t produce enough insulin. Cloning the insulin gene has provided a way of producing large amounts of human insulin which is used to treat diabetes.
Then, we are going to disclose the mystery of cloning a gene. To clone a gene, scientists remove the DNA from a cell, isolate the specific gene of interest, and then get it to multiply. Sound simple? Not so fast. Let’s look at each step.
First the DNA must be removed from the cell. Over the years scientists have perfected chemical methods for doing this, based on the physical properties of DNA molecules. The DNA is then cut into pieces using special proteins. You may think of these special proteins as little knives programmed to cut the DNA in specific places. By using the correct special proteins, scientists can isolate whatever gene they want.
Once the gene is isolated, it can then be duplicated. Mammalian genes do not reproduce by themselves, however. To replicate them, scientists attach them to pieces of non-mammalian DNA that do replicate on their own. The most common procedure uses small circular pieces of DNA called plasmids that come from bacteria. Plasmids have two useful characteristics. They are easily incorporated into bacteria; they multiply by themselves inside bacteria. The gene of interest is combined with a plasmid and some proteins. The proteins open the plasmid circle and stitch in the new gene. The result is a recombinant DNA molecule. The plasmid carries the gene into a host cell. Once inside the host, the plasmid multiplies, making lots of copies of itself and the gene it contains.
When the host cell divides, copies of the recombinant DNA molecule are passed to the cell’s offspring. As the bacterial cells continue to divide, a colony of identical cells is produced. Each cell contains one or more copies of the recombinant DNA molecule. The gene is now considered cloned.
Let’s go back now to the example of the insulin gene. Prior to cloning this gene, scientists purified insulin from animal sources, like pigs or cows. Scientists isolated the insulin gene from the DNA of human pancreatic cells. Then they attached the insulin gene to a plasmid and were able to get bacterial cells to incorporate the recombinant DNA. The result was a colony of bacteria that continually produced human insulin—a little insulin producing factory!
选项
答案
treat diseases
解析
讲座中的相关内容是:Cloning genes also enables scientists to mass-produce proteins that can be used to treat a variety of diseases.可见克隆技术可以用于治病,因此答案为treat diseases。
转载请注明原文地址:https://kaotiyun.com/show/scbK777K
0
专业英语八级
相关试题推荐
A、Billionairesarequiterarenowadays.B、Forbes400includesbillionairesallovertheworld.C、Billionairesaremuchmorenow
HowtoDoWellonaJobInterviewAtypicalinterview—confusing,humiliating,andnerve-racking—【T1】______inthesameroomw
PowerLearningTherearenoshortcutsaboutlearning,buttherearesomeprovenstudyskillsthatcanreallyhelp.Theyinclude
A、Becauseitmadepeoplemad.B、Becauseitputtoomanyphotosonthepaper.C、Becauseitmadestoriestooshort.D、Becauseitm
A、Thosewhoborrowbyemotionalbullying.B、Brothers.C、Distantrelatives.D、Cousins.A根据句(9)可知,米奇建议,要避免屈服于感情胁迫。需要钱的人有时会用尽各种办法说服
TheSurvivalofEnglishI.410CEtothemid-eighthcentury—KingVortigerninvited【T1】______mercenariesfordefence【T1】_____
TheDifferenceBetweenSpokenandWrittenEnglishI.Thedefinitionofspeechandwritingtwo【T1】______methodsofcommunication
TheDifferenceBetweenSpokenandWrittenEnglishI.Thedefinitionofspeechandwritingtwo【T1】______methodsofcommunication
A、Enoughfunds.B、Teachersandbuildings.C、Atechnicalorscientificbreakthrough.D、Educationalequipment.C此题考查选项中哪个并不是让计划中的所
AdviceforStudents:HowtoTalktoProfessorsI.IntroductionA.Professors:normalpeople,justlikeeveryoneelseB.Student
随机试题
Aslongasthebalconydoorsremained_______,itwasn’tthatbigofanissue.()
慢性肾衰竭合并肾性贫血的患者除了积极输血外,没有什么有效措施可纠正贫血。()
29岁妇女,结婚3年未孕,近2年经期有轻度下腹痛,因不孕而就诊,平时月经规律,3~4/28~30天,妇科检查:子宫平位,正常大小,活动度差,子宫左后方扪及约8cm×6cm×5cm囊性肿块,轻压痛,右侧附件无异常,B超提示:左侧卵巢囊性包块,子宫及右侧卵巢正
企业重大经营决策基本程序主要包括()。
旅行社质量保证金是指由旅行社缴纳,旅游行政管理部门所有,用于保障旅游者权益的专用款项。
盐酸、硫酸和硝酸是中学阶段常见的三种强酸。请就三者与金属铜的反应情况,回答下列问题。若将过量铜粉与一定量浓硝酸反应,当反应完全停止时,共收集到气体1.12L(标准状况),则该气体的成分是_________,反应中所消耗的硝酸的物质的量可能为()。
下列作家、国籍、作品、人物对应关系正确的一项是()。
简述布卢姆的目标分类理论。
当代国际关系错综复杂,我们在处理国际关系时,应该()。
束缚:摆脱:自由
最新回复
(
0
)