首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B= (1)求a; (2)求满足AP=B的可逆矩阵P.
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B= (1)求a; (2)求满足AP=B的可逆矩阵P.
admin
2018-08-01
80
问题
(18)已知a是常数,且矩阵A=
可经初等列变换化为矩阵B=
(1)求a;
(2)求满足AP=B的可逆矩阵P.
选项
答案
(1)对矩阵A作初等行变换: [*] 由此知A的秩r(A)=2;又因为初等列变换不改变矩阵的秩,所以矩阵B的秩也为2,对B作初等行变换: [*] 由此可知r(B)=2[*]a=2,所以a=2. (2)由(1)已知a=2,对矩阵(A B)作初等行变换: [*] 设矩阵B按列分块为B=(β
1
,β
2
,β
3
),则由上面的阶梯形矩阵知: 方程组Ax=ββ
1
的通解为x=[*],k
1
为任意常数; 方程组Ax=β
2
的通解为x=[*],k
2
为任意常数; 方程组Ax=β
3
的通解为x=[*],k
3
为任意常数. 所以矩阵方程AX=B的解为 [*] 由于行列式|X|=k
3
-k
2
.所以当k
3
≠k
2
时矩阵x可逆,故所求的矩阵P=X(k
3
≠k
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/t2j4777K
0
考研数学二
相关试题推荐
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设,求a,b的值.
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
设齐次线性方程组,其中ab≠0,72≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
随机试题
简述商标的构成条件。
治疗湿痹、筋脉拘挛、吐泻转筋病证,最宜选用的药物是
下列各项,不属雌激素作用的是()
民事纠纷的法律解决途径中,()是民事纠纷的当事人在自愿互谅的基础上,就已经发生的争议进行协商、妥协与让步并达成协议,自行解决争议的一种方式。
甲、乙类生产厂房每层的总建筑面积不超过50m2,且同一时间内的生产人员总数不超过5人的洁净厂房可以()安全出口。
教学活动的本质是()
我们坐在一列靠站停止的火车上,当相邻的一列火车开动时,我们会觉得是我们所坐的这列火车开动了。这种现象是()
下面结构体的定义语句中,错误的是()。
下列叙述中,不正确的是()。
D该句句式完整,空格处是一个插入语,需填入副词。上文提到美元可能在未来20-30年慢慢失去主导地位,再根据下文的wellbedriven…可知。要等到新对手的出现才能得到很好的推动,语义上形成转折,故选however。
最新回复
(
0
)