首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
admin
2016-05-30
61
问题
(2013年)设二次型f(χ
1
,χ
2
,χ
3
)=2(a
1
χ
1
+a
2
χ
2
+a
3
χ
3
)+(b
1
χ
1
+b
2
χ
2
+b
3
χ
3
)
2
,记
(Ⅰ)证明二次型f对应的矩阵为2αα
T
+ββ
T
.
(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
选项
答案
[*] 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
. (Ⅱ)记矩阵A=2αα
T
+ββ
T
.由于α,β正交且为单位向量,即α
T
α=1,β
T
β=1,α
T
β=β
T
α=0,所以 Aα=(2αα
T
+ββ
T
)α=2α, Aβ=(2αα
T
+ββ
T
)β=β, 于是λ
1
=2,λ
2
=1是矩阵A的特征值.又 r(A)=r(2αα
*
+ββ
*
)≤r(2αα
*
)+r(ββ
*
)≤2, 所以λ
3
=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/t734777K
0
考研数学二
相关试题推荐
对于任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则().
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),满足f(x+y)=f(x)ey+f(y)ex,f’(0)=a≠0.证明:对任意x∈(-∞,+∞),f’(x)存在,并求f(x).
以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的微分方程是________.
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
函数f,g的二阶偏导数均存在,z=f[xy,lnx+g(xy)],求的值.
计算曲面积分I=(2x+z)dydz+zdxdy,其中∑为有向曲面z=x2+y2(0≤z≤1),并且其法向量与z轴正向夹角为锐角.
若在x=1处连续,求a的值。
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
随机试题
下列关于血管性出血性疾病的描述,正确的是
A.squamouscarcinomaB.ADenocareinomaC.alveolarcellcarcinomaD.smallcelllungcarcinomaE.Largecelllungcarcinoma病理分型属于腺
除了慢性进行性膀胱炎症状外,诊断泌尿系结核的根据是
以下哪项为瓜藤缠的主要发病特点:
下列不是深反射检查的是
比表面积表示堆密度表示
保险经纪机构向中国保监会申请换发许可证,应当提交申请前( )的资产负债表和利润表。
中国公民张先生为国内某企业高级技术人员,2017年1~12月取得的收入情况如下:(1)每月取得工薪收入8400元。(2)3月转让其2013年购买的三居室精装修房屋一套,售价230万元,不含增值税,转让过程中支付可在税前扣除的相关税费13.8万元。该套房
近年来,很多人才涌往北京、上海、广州等大城市,但却有一些大城市的白领在逃出去,你怎么看?
A、Becauseitneedsgovernment’ssupport.B、Becauseit’shardtoacquirethetechnology.C、Becauseit’snoteasytomakeaprofit
最新回复
(
0
)