(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记 (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT. (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为

admin2016-05-30  46

问题 (2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记

    (Ⅰ)证明二次型f对应的矩阵为2ααT+ββT
    (Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为

选项

答案[*] 又2ααT+ββT为对称矩阵,所以二次型f的矩阵为2ααT+ββT. (Ⅱ)记矩阵A=2ααT+ββT.由于α,β正交且为单位向量,即αTα=1,βTβ=1,αTβ=βTα=0,所以 Aα=(2ααT+ββT)α=2α, Aβ=(2ααT+ββT)β=β, 于是λ1=2,λ2=1是矩阵A的特征值.又 r(A)=r(2αα*+ββ*)≤r(2αα*)+r(ββ*)≤2, 所以λ3=0是矩阵A的特征值.由于f在正交变换下的标准形中各变量平方项的系数为A的特征值,故f在正交变换下的标准形为2y12+y22

解析
转载请注明原文地址:https://kaotiyun.com/show/t734777K
0

最新回复(0)