首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000
admin
2016-11-03
66
问题
设某种器件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为20小时.在使用中当一个器件损坏后立即更换另一个新的器件,如此连续下去.已知每个器件进价为a元,试求在年计划中应为此器件做多少预算,才可以有95%的把握保证一年够用(假定一年按2000个工作小时计算).
选项
答案
设年计划购进n个此种器件,则预算应为na元.每个器件使用寿命为X
i
(1≤i≤n),则X
i
相互独立,且都服从参数为λ的指数分布.依题意知 λ=1/20, E(X
i
)=1/λ, D(X
i
)=1/λ
2
, 且n应使 P([*]X
i
≥2000)≥0.95, 即 P(0≤[*]X
i
<2000)≤0.05. 由于n相当大,且 [*] 根据独立分布的中心极限定理,得到 [*] 解得n≥118,故年计划预算最少为118a元.
解析
求解与随机变量之和的概率有关的问题时,常利用其分布律进行,但随机变量个数较多时,可利用中心极限定理近似计算.
转载请注明原文地址:https://kaotiyun.com/show/tHu4777K
0
考研数学一
相关试题推荐
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
证明下列极限都为0;
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
若α1,α2,α3,β1,β2都是4维列向量,且4阶行列式丨α1,α2,α3,β1丨=m,丨α1,α2,β2,α3丨=n,则4阶行列式丨α3,α2,α1,β1+β2丨=__________.
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
方程xy2+y-l=0能否确定y是x的隐函数?若能,试写出它的显函数形式.
函数f(x)=展开成x的幂级数为___________.
设f(x,y)是连续函数,则
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[α11,α12,α13,α14]T,α2=[α21,α22,α23,α24]T.证明:向量组α1,α2,β3,β4线性无关.
随机试题
图中所示警告标志的作用是______。
把下列一般主谓句变换为主谓谓语句。A.黄山的风景十分优美。B.在这次数学考试中,他得了第一名。C.老王对这件事很有经验。D.他吃了好几天中药。
已知在一定温度下,反应C(g)=A(g)+B(g),则下列叙述中正确的是()。
当操作打磨工具时,必须使用()。
简述班级授课制的主要优缺点。
微分方程y’+y=e-xcosx;满足条件y(0)=0的解为_________________.
公有成员变量MAX是一个int型值,变量的值保持常数值100,则下列使用哪个选项的声明定义这个变量是正确的?
Therelationshipbetweenthehomeandmarketeconomieshasgonethroughtwodistinctstages.Earlyindustrializationbeganthep
【S1】【S7】
WhenLouiseBrownwasbornon25July1978,shekickedoffanera.Thefirst"testtubebaby"isamotherherselfnow,andshe’s
最新回复
(
0
)