已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(﹣1,2,t)T,β2=(4,1,5)T。 (Ⅰ)t为何值时,α1,α2与β1,β2等价; (Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。

admin2020-07-31  13

问题 已知两个向量组α1=(1,2,3)T,α2=(1,0,1)T与β1=(﹣1,2,t)T,β2=(4,1,5)T
(Ⅰ)t为何值时,α1,α2与β1,β2等价;
(Ⅱ)当两个向量组等价时,写出两个向量组之间的线性表示式。

选项

答案(Ⅰ)对向量组α1,α2和β1,β2所构成的矩阵(α1,α2,β1,β2)进行初等行变换化为阶梯形矩阵, [*] 因为α1,α2与β1,β2等价,所以r(α1,α2)=r(β1,β2),所以t=1。 (Ⅱ)对矩阵(α1,α2,β1,β2)进行初等行变换化为行最简形。 [*], 所以β1=α1-2α2,β2=[*]。 对矩阵(β1,β2,α1,α2)进行初等行变换化为行最简形。 [*], 所以 [*]。

解析
转载请注明原文地址:https://kaotiyun.com/show/tL84777K
0

最新回复(0)