首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
admin
2017-01-14
57
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f’(c)|≤2a+
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f’(c)(x-c)+[*](x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1。 在(*)式中令x=0,则有 f(0)=f(c)+f’(c)(0-c)+[*](0-c)
2
,0<ξ
1
<c<1, 在(*)式中令x=1,则有 f(1)=f(c)+f’(c)(1-c)+[*](1-c)
2
,0<ξ
2
<c<1, 将上述的两个式子相减得到 f(1)-f(0)=f’(c)+[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
], 因此 |f’(c)|=|f(1)-f(0)-[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
]| ≤|f(1)|+|f(0)|+[*]|f’’(ξ
2
)|(1-c)
2
+[*]|f’’(ξ
1
)|c
2
≤2a+[*][(1-c)
2
+c
2
]。 又因当c∈(0,1)时,有(1-c)
2
+c
2
≤1,所以|f’(c)|≤2a+[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tRu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
(1)设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);(2)设f(x)=xe-x,求f(n)(x).
已知函数f(x,y)在点(0,0)某邻域内连续,且则
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设随机变量X-N(0,1),Y~N(1,4)且相关系数ρXY=1,则().
设场A={x3+2y,y3+2z,z3+2x},曲面S:x2+y2+z2=2z内侧,则场A穿过曲面指定侧的通量为().
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
设常数λ>0,而级数收敛,则级数().
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
行列式的第4行元素的余子式之和的值为___________.
随机试题
患者,女,15岁。持续高热1周,近日伴腹痛,腹泻,体格检查:肝肋下2cm质软,脾肋下2cm,腹壁可见玫瑰疹,肥达反应“0”≥1:80.“H”≥1:60。首选抗生素是
根据需要,可以对环境做不同的分类。通常按环境的原理,可将环境分为()等几种。
保证合同约定保证人承担保证责任直至主债务本息还清时为止等类似内容的,视为约定不明,保证期间为主债务履行期届满之日起()。
下列关于借款费用的表述中,正确的有()。
根据保险法律制度的规定,下列有关保险合同成立时间的表述中,正确的是()。
被道教誉为“天下第九名山”,有“蜀道明珠”之称的是()。
耕耘:收获
在群体压力下,成员有可能放弃自己的意见而采取与大多数人一致的行为,这就是()。
利他行为:指人们出于自愿、不指望任何报酬的帮助他人的行为。下列属于利他行为的是()。
设是从总体X中取出的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果()
最新回复
(
0
)