首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
53
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
微分方程y"-3y’+2y=2ex满足=1的特解为________.
由题设,需补充f(x)在x=1处的定义.[*]
设则f’(x)=0的根的个数为()
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
设f(χ)在χ=0的邻域内有定义,且f(0)=0,则f(χ)在χ=0处可导的充分必要条件是().
设f(x)在x=0的邻域内连续可导,g(x)在x=0的邻域内连续,且,又f’(x)=-2x2+∫0xg(x-t)dt,则().
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2……αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1,+knα2+…+knαn=0。②如果α1,α2……αn线性无关,则对任意不全为零的常数k1,k2,…,kn,都
设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
设f(x)在[a,b]上非负,在(a,b)内f"(x)>0,f’(x)<0.I1=[f(b)+f(a)],I2=∫abf(x)dx,I3=(b一a)f(b),则I1、I2、I3大小关系为()
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间.(其中长度单位是cm,时间单位为h)?
随机试题
卫星直播电视
小水泡音多出现的时相和时期是
地高辛的正性肌力作用主要是由于
《矿山生态环境保护与污染防治技术政策》规定,到2010年,新建、扩建、改建选煤和黑色冶金选矿水重复利用率应达到()。
下列不属于呆账核销后的管理的是()。
在追求短期收益和长期价值最大化的管理过程中,错误的资产负债管理政策可能威胁商业银行的未来发展,在这种情况下,银行面临的风险类型主要是()。
2006年6月,中国证监会在对甲上市公司(以下简称“甲公司”)进行检查,发现以下情况:(1)2006年1月,甲公司成立,注册资本为人民币6000万元。公司采取募集设立的方式设立。(2)2006年2月,甲公司拟申请股票上市。当时,甲公司的股本
(2007年真题)旧律(指汉律)因秦《法经》,就增三篇,而《具律》不移,因在第六。罪条例既不在始,又不在终,非篇章之义。故(新律)集罪例以为《刑名》,冠于律首。——《晋书.刑法志》上述文字材料记录了汉、魏时期法典体例发展演变的情况,请分
A、 B、 C、 D、 B
Mr.Smithisa______.Whichfilmisforchildren?
最新回复
(
0
)