首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0,证明: 存在ξ∈(a1,an),使得
admin
2021-11-25
63
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0,证明:
存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,..,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,..,a
n
的数,不妨设a
1
<c<a
2
<...a
n
令[*] 构造辅助函数ψ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然ψ(x)在[a
1
,a
n
]上n阶可导,且ψ(a
1
)=ψ(c)=ψ(a
2
)=...=ψ(a
n
)=0 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),....,ξ
n
(1)
∈(a
n-1
,a
n
),使得ψ’(ξ
1
(1)
)=ψ’(ξ
2
(1)
)=...=ψ’(ξ
n
(1)
)=0,ψ’(x)在(a
1
,a
n
)内至少有n个不同的零点,重复使用罗尔定理,则ψ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同的零点,设为c
1
,c
2
∈(a
1
,a
n
),使得 ψ
(n-1)
(c
1
)=ψ
(n-1)
(c
2
)=0 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得ψ
(n)
(ξ)=0 而ψ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tdy4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
微分方程dy/dx=y/(x+y4)的通解是.
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,试求(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设z=z(x,y)由方程所确定,其中F是任意可微函数,则=______。
如图1-3_2,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设则f’(x)=0的根的个数为()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是()
随机试题
患者女性,62岁,腹胀伴食欲减退,自觉腹部增大5个月。查体腹部膨隆,移动性浊音阳性,妇科检查子宫及双附件触诊不清,三合诊后穹隆可触及不平结节。若腹部CT、提示腹水,双附件囊实性肿物,大网膜增厚局部呈饼状,血CA1251260U/ml。最可能的诊断是
数字信号如图所示,如果用其表示数值,那么,该数字信号表示的数量是()。
根据《房屋建筑与装饰工程工程量计算规范》GB50854—2013,关于金属结构工程量计算的说法,正确的是()。【2013年真题】
根据股东享有权利和承担风险大小的不同,股票分为普通股股票和()股票。
普通股的持有者是股份公司的基本股东,依法享有()等权利。Ⅰ.利润分配Ⅱ.资产收益Ⅲ.参与重大决策Ⅳ.选择管理者
A公司为经营战略转型进行了一系列投资和资本运作。各个公司所得税税率均为25%。在合并财务报表层面出现的暂时性差异均符合递延所得税资产或递延所得税负债的确认条件。有关业务如下:(1)A公司于2013年1月1日以2500万元购入B公司30%的股权,取得该
专门审判案件的官署大理寺始立于()。
计算机系统软件中最核心的是()。
Ingeneral,peoplearelivinglongernow.Discussthecausesofthisphenomenon.
PreparingChildrentoBeSafeatCollegeA)Moneycanbuymanythingstohelpchildrenexcelacademically,liketutorsandprivat
最新回复
(
0
)