首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04)设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
(04)设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解.
admin
2019-08-01
93
问题
(04)设有齐次线性方程组
试问a取何值时,该方程组有非零解,并求出其通解.
选项
答案
对方程组的系数矩阵作初等行变换,有 [*] 当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 x
1
+x
2
+x
3
+x
4
=0, 由此得基础解系为 η
1
=(-1,1,0,0)
T
,η
2
=(-1,0,1,0)
T
,η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 x=k
1
η
1
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a≠0时, [*] 可知a=-10时,r(A)=3<4,故方程组有非零解,其用自由未知量表示的通解为 x
2
=2x
1
,x
3
=3x
1
,x
4
=4x
1
,x
1
任意 由此得基础解系为 η=(1,2,3,4)
T
, 于是所求方程组的通解为x=kη,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/uJN4777K
0
考研数学二
相关试题推荐
设A=有三个线性无关的特征向量,则a=_________.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设f(x)在x=a处可导,且f(a)≠0,则|f(x)|在x=a处().
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
求曲线y=+ln(1+ex)的渐近线方程.
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
[2006年]设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则().
随机试题
新鲜冰冻血浆中血浆蛋白含量应
A、已投入使用,所以提供的信息较可靠B、具有一定原创性,有独到见解C、技术内容广泛,技术前沿或新颖,描述详尽D、出版周期短,信息传递快E、内容较系统,全面,成熟,可靠专利文献的特点是
保管合同中寄存人的义务不包括( )。
甲公司与乙公司约定,由甲公司向乙公司交付1吨药材,乙公司付款100万元。乙公司将药材转卖给丙公司,并约定由甲公司向丙公司交付,丙公司收货后3日内应向乙支付价款120万元。张某以自有汽车为乙公司的债权提供抵押担保,未办理抵押登记。抵押合同约定:“在
人员任用的程序不包括( )。
货币互换与利率互换的区别是()
投资结构性外汇理财产品的客户面临的风险由下列哪些因素导致?()
一般资料:求助者,女性,38岁,律师。案例介绍:求助者因为婚姻问题而内心痛苦近半年时间,经朋友介绍前来咨询。下面是心理咨询师与求助者之间的一段咨询对话:求助者:张老师您好!心理咨询师:您好!请坐。天气挺热,我给您倒杯
2000年8月俄罗斯的库尔斯克号核潜艇,在北冰洋的巴仑支海失事沉没,沉没地点位于北极圈内,据新闻报道打捞遇难官兵遗体的工作一直持续到了11月,你认为使工作人员能够在这一海域持续打捞工作的最主要的原因是:
在窗体上画一个文本框(名称为Text1)和一个标签(名称为Label1),程序运行后,在文本框中每输入一个字符,都会立即在标签中显示文本框中字符的个数。以下可以实现上述操作的事件过程是
最新回复
(
0
)