首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
admin
2017-10-25
80
问题
设齐次线性方程组Ax=0的基础解系为α
1
=(1,3,0,2)
T
,α
2
=(1,2,-1,3)
T
.Bx=0的基础解系为β
1
=(1,1,2,1)
T
,β
2
=(0,-3,1,a)
T
.
若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)假设可以,即β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则(k
1
,k
2
,k
3
,0)
T
是Ax=β的解. 从而(k
1
,k
2
,k
3
,0)
T
-(-1,1,0,2)
T
=(k
1
+1,k
2
-1,k
3
,-2)
T
就是Ax=0的解. 但是显然(k
1
+1,k
2
-1,k
3
,-2)
T
和(1,-1,2,0)
T
线性无关. 所以β不可以由α
1
,α
2
,α
3
线性表示. (Ⅱ)因为(-1,1,0,2)
T
是Ax=β的解,则β=-α
1
+α
2
+2α
4
. 又因为(1,-1,2,0)
T
是Ax=0的解,则α
1
-α
2
+α
3
=0. 所以,β和α
3
都可由α
1
,α
2
,α
4
线性表示. 又由R(α
1
,α
2
,α
3
,α
4
,β)=R(α
1
,α
2
,α
3
,α
4
)=3,所以,α
1
,α
2
,α
4
是极大无关组.
解析
(Ⅰ)利用反证法;
(Ⅱ)由条件所给方程组的解,来确定向量之间的线性关系.
转载请注明原文地址:https://kaotiyun.com/show/ukr4777K
0
考研数学一
相关试题推荐
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X-E(X)|≥2)≤_________.
设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为().
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设随机变量X~N(μ,σ2),则P(|X一μ|<2σ)().
求微分方程y"+2y’一3y=(2x+1)ex的通解.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(1n2)=0的特解.
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
已知对于n阶方阵A,存在自然数忌,使得Ak=0.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设y(x)是方程y(4)一y’’=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
微分方程y"+y=x2+1+sinx的特解形式可设为
随机试题
全身强直—阵挛性发作和失神发作合并发生时,药物治疗首选()
-Imustapologizefor______aheadoftime.-That’sallright.
女,28岁,煤气中毒1天后转送医院,神志不清,瞳孔等大,光反应弱,体温、血压正常,心脏听诊无异常,两肺呼吸音粗,腹部(-),腱反射存在,病理反射(+)、血常规无异常。抢救措施中,最重要的应为
药物的鉴别方法A、Keller-Kiliani反应B、与碱性酒石酸铜试液产生砖红色沉淀C、加硫酸水解后,加碱性酒石酸铜产生砖红色沉淀蔗糖
下列选项中不属1999年宪法修正案的是哪一项?
张拉用的千斤顶与压力表应配套标定、配套使用,标定应由()定期进行。
建立严密的法治监督体系,最关键的就是()。
下列关于我国立法的表述,正确的是()(2012年一综一第19题)
欧洲的信息技术安全评测准则(ITSEC)定义了______个评估级别。
Allaroundtheworldlargecitieshavethesameproblem:airpollution.MexicoCityhasverybadair.Theairthereisdirtyand
最新回复
(
0
)