首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2. (1)求a; (2)用正交变换法化二次型为标准形.
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2. (1)求a; (2)用正交变换法化二次型为标准形.
admin
2019-08-23
91
问题
设二次型f(χ
1
,χ
2
,χ
3
)=(a-1)χ
1
2
+(a-1)χ
2
2
+2χ
3
2
+2χ
1
χ
2
(a>0)的秩为2.
(1)求a;
(2)用正交变换法化二次型为标准形.
选项
答案
(1)A=[*],因为二次型的秩为2,所以r(A)=2,从而a=2. (2)A=[*],由|λE-A|=0得λ
1
=λ
2
=2,λ
3
=0. 当λ=2时,由(2E-A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*],α
2
=[*]; 当λ=0时,由(0E-A)X=0得λ=0对应的线性无关的特征向量为α
3
=[*]. 因为α
1
,α
2
两两正交,单位化得 [*] 则f=X
T
AX[*]Y
T
(Q
T
AQ)Y=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/vbA4777K
0
考研数学二
相关试题推荐
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
已知A是n阶可逆矩阵,那么与A有相同特征值的矩阵是()
已知矩阵只有一个线性无关的特征向量,那么A的三个特征值是______。
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
设f=x12+x22+5x32+2ax1x2一2x1x3+4x2x3为正定二次型,则未知系数a的范围是______。
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()[img][/img]
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
(I)求定积分an=∫02x(2x-x2)ndx,n=1,2,…;(Ⅱ)对于(I)中的an,证明an﹢1<an(n=1,2,…)且=0.
已知n阶方阵A满足矩阵方程A2一3A一2E=O.证明A可逆,并求出其逆矩阵A-1.
设函数z=z(z,y)由方程x2+y2+z2=xyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
随机试题
A.蛤蚧B.胡桃仁C.冬虫夏草D.紫河车平补肺肾阴阳,兼止血化痰,用于久咳虚喘,劳嗽痰血,为诸痨虚损调补之要药的是
全冠修复中,活髓牙牙体预备后,粘固剂粘固临时冠最好的是
深孔削坡爆破时,对钻孔的要求是()m。
在用盾构法修筑隧道时,其初始掘进不具备的特点是( )。
纳税人对税务机关的决定,享有陈述权、申辩权。
下列各项中,属于商业汇票绝对记载事项的是()。
“刑过不避大臣,赏善不遗匹夫”体现了()的思想。
芭蕾舞起源于()。
Brandsarebasicallyapromise.Theytellconsumerswhatqualitytoexpectfroma【C1】______andshowoffitspersonality.Firmsi
Althoughtheenjoymentofcolourisuniversalandcolourtheoryhasallkindsofnamestoit,colourremainsaveryemotionalan
最新回复
(
0
)