首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
admin
2018-11-21
42
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)一f(x
2
)|<
.
选项
答案
联系f(x
1
)一f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
一x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*]. 2)若x
2
一x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)—f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*], ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)一f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(2)|=|f’(η)(1一x
2
)|<[*]. ②当x
1
≤[*]且x
2
=1时,同样有 |f(x
1
)一f(x
2
)|=|f(x
1
)一f(1)I=|f(x
1
)—f(0)|=|f’(ξ)(x
1
—0)|<[*]. 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/vpg4777K
0
考研数学一
相关试题推荐
设函数f(r)(r>0)有二阶连续导数,并设u=f()满足div(gradu)=.求u的一般表达式.
已知随机变量X的概率分布P(X=K)=ae-λ,其中λ>0,k=1,2,…,则E(X)为().
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明α1,α2,…,αn线性无关;(2)求A的特征值、特征向量.
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
计算曲面积分4zxdydz-2zydzdx+(1一z2)dxdy,其中S为z=ey(0≤y≤a)绕z轴旋转成的曲面下侧.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系.
设A是三阶矩阵,b=[9,18,-18]T,方程组AX=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,一2]T,其中k1,k2为任意常数,求A及A100.
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,-∞<x<+∞,则λ的最大似然估计量=______。
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
凌濛初的诗文集是()
债券一旦发行,决定债券价格的最主要因素是()
CT引导经皮肺穿刺活检的适应证包括哪些
某女孩,6岁,2个月来反复突发突止的意识障碍,表现为突然动作中断,呆立凝视,呼之不应,手中物体掉落,但从不跌倒,持续数秒钟缓解。该患者首选的治疗药物是
密闭容器内自由表面绝对压强p0=80kN/m2,当地大气压强为pa=101kN/m2,则液面下水深2m处的相对压强为()。
为了防止细水雾喷头堵塞,影响灭火效果,系统还设有()。
银行业金融机构从事期货保证金存管、期货结算业务的资格,经( )审核同意后,由国务院期货监督管理机构批准。
用人单位内部劳动规则包括()。
一般情况下,在行政公文的正式文件中,有三个要素会采用“红色”标记,这三个要素是()。
Heisnotapopfanandtohimonepopsongisverymuchlike______.
最新回复
(
0
)