首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(χ,y)=χ2y(4-χ-y)在由χ轴、y轴及χ+y=6所围成的闭区域D上的最小值和最大值.
求二元函数z=f(χ,y)=χ2y(4-χ-y)在由χ轴、y轴及χ+y=6所围成的闭区域D上的最小值和最大值.
admin
2018-04-18
49
问题
求二元函数z=f(χ,y)=χ
2
y(4-χ-y)在由χ轴、y轴及χ+y=6所围成的闭区域D上的最小值和最大值.
选项
答案
(1)求f(χ,y)在区域D的边界上的最值, 在L
1
:y=0(0≤χ≤6)上,z=0; 在L
2
:χ=0(0≤y≤6)上,z=0; 在L3:y-6-χ(0≤χ≤6)上,χ=-2χ
2
(6-χ)=2χ
3
-12χ
2
, 由[*]=6χ
2
-24χ=0得χ=4,因为f(0,6)=0,f(6,0)=0,f(4,2)=-64,所以f(χ,y)在L
3
上最小值为-64,最大值为0. (2)在区域D内,由[*]得驻点为(2,1), A=[*]=-8, 因为AC-B
2
>0且A<0,所以(2,1)为f(χ,y)的极大值点,极大值为f(2,1)=4, 故z=f(χ,y)在D上的最小值为m=f(4,2)-64,最大值为M=f(2,1)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/vtk4777K
0
考研数学二
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点叼,η∈(0,1),使得fˊ(η)fˊ(ζ)=1.
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的属于λ1,λ2的特征向量,则().
微分方程y〞一4y=x+2的通解为().
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
设n阶方程A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…γn),记向量组(I):α1,α2,…,αn,(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
求极限.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
(2012试题,三)(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
随机试题
体内可促进温热性发汗的内源性物质是
单人心肺复苏时,胸外心脏按压与人工呼吸的正确操作是()
患者32岁,外阴瘙痒伴分泌物多4~5天。妇科检查:阴道黏膜散在红色斑点,阴道内多量脓性泡沫状分泌物,有臭味此病人确切诊断为
A.酮康唑B.培哚普利C.利多卡因D.法莫替丁E.卡马西平
中药胶囊装量在0.3g及以上的差异限度要求为
股疝从卵圆窝突出后的肿块常呈()
下列方法中,()是通过图解法来识别和分析风险事件发生前存在的各种风险因素,由此判断和总结哪些风险因素最可能引发风险事件。
联觉是一种感觉器官受到刺激时引起性质完全不同的其他感觉的现象。它是不同感觉间相互作用的结果,也是一种条件反射现象。联觉现象在所有感觉中都存在,表现有个别差异。在现实生活中,由于某一种事物属性的出现经常伴随着另一种事物属性的出现,这两种事物属性所引起的感觉之
我国最早依据马克思主义理论对教育本质及教育本源问题作出正确阐述的是()。
被宣告死亡人的死亡日期是()。
最新回复
(
0
)