首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
admin
2020-03-16
78
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
选项
答案
设有 F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一f(x)g(1), 则F(x)在[0,1]上的导数连续,并且 F’(x)=g(x)f’(x)—f’(x)g(1)=f’(x)[g(x)一g(1)], 由于x∈[0,1]时,f’(x)≥0,g’(x)≥0,因此F’(x)≤0,即F(x)在[0,1]上单调递减。 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt一g(1)g(1), 而又因为 ∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|∫
0
1
一∫
0
1
f(t)g’(t)dt=f(1)g(1)一∫
0
1
f(t)g’(t)dt, 故F(1)=0。 因此x∈[0,1]时,F(x)≥F(1)=0,由此可得对任何a∈[0,1],有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/vz84777K
0
考研数学二
相关试题推荐
∫arcsincarccosxdx
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,试证:在(a,b)内存在ξ,使得
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
求极限:
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设D={(x,y)|(x一1)2+(y一1)2=2},计算二重积分。
求球体x2+y2+z2=4a2被柱面x2+y2=2ax(a>0)所截得的含在圆柱面内的那部分立体的体积.
(1996年)设有正椭圆柱体,其底面的长短轴分别为2a,2b,用过此柱体底面的短轴与底面成口角(0<a<)的平面截此柱体,得一楔形体(如图2.10)求此楔形体的体积.
设物体由曲面z=x2+y2和z=2x所围成,其上各点的密度μ等于该点到xOy平面的距离的平方.试求该物体对z轴的转动惯量.
随机试题
管理全国教育的活动属于()
新时期“朦胧诗”的代表诗人是()
下列不属于硬资源的是()
求由方程2xz-2xyz+ln(xyz)=0确定的隐函数z=z(x,y)在(1,1)处的微分.
关于法与道德的关系存在两种对立的观点,即自然法学和实证主义法学。下列不属于自然法学的观点的是哪个?()
事实表明,造成重大工业事故的可能和严重程度,既与()有关,又与设施中实际存在的危险品的数量有关。
()就是按照查办具体内容,根据各单位工作分工责成办理。
对班级授课制进行系统论证的教育家是()。
下面关于计算机总线的叙述中,错误的是
如果两个实体之间的联系是M:N,则在转换成关系模型时,如何引入第三个交叉关系?
最新回复
(
0
)