首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. 证明α1,α2,α3线性无关;
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. 证明α1,α2,α3线性无关;
admin
2018-09-25
48
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
=2α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
2
+2α
3
.
证明α
1
,α
2
,α
3
线性无关;
选项
答案
由题设条件,得 (A-2E)α
1
=0,(A-2E)α
2
=α
1
,(A-2E)α
3
=α
2
. 对任意常数k
1
,k
2
,k
3
,令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0. ①式两端左边乘A-2E,得k
2
α
1
+k
3
α
2
=0; ②式两端左边乘A-2E,得k
3
α
1
=0. 因α
1
≠0,故k
3
=0,代回②式,得k
2
=0,代回①式得k
1
=0. 故 k
1
α
1
+k
2
α
2
+k
3
α
3
=0=>k
1
=k
2
=k
3
=0, 得证α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/w0g4777K
0
考研数学一
相关试题推荐
设函数f(x)在[0,π]上连续,且f(x)sinxdx=0,f(x)cosxdx=0.证明:在(0,π)内.f(x)至少有两个零点.
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=,记Z=X+Y,求E(Z),D(Z).
设函数u(x,y)有连续二阶偏导数,满足=0,又满足下列条件:u(x,2x)=x,u′x(x,2x)=x2(即u′x(x,y)|y=2x=x2),求u″xx(x,2x),u″xy(x,2x),u″yy(x,2x).
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
求下列极限:
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n则四阶行列式|α3,α2,α1,β1+β2|等于().
设各零件的质量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总质量超过2510kg的概率是多少?
(88年)设f(x)=,f[φ(x)]=1一x且φ(x)≥0,求φ(x)及其定义域.
求其中S是椭球面,取外侧.
假设实验室器皿中产生A类细菌与B类细菌的机会相等,且每个细菌的产生是相互独立的,若某次试验产生了n个细菌,则其中至少有一个A类细菌的概率是___________。
随机试题
中期国债是指偿还期限在()的国债。
人参配莱菔子在药物七情配伍关系中属
患儿6个月,腹泻水样便,每天10余次。为稀水样便,今日病儿昏睡,呼吸深快,尿量极少,查体:四肢厥冷,二氧化碳结合力8mmol/L,血钾4.0mmol/L,血钠:140mmol/L该患儿第一天补液的总量是
如条件有限,办公区的人员与同在一栋楼内的()功能区的人员可共用出入口。
皮亚杰关于认知结构的发展涉及到的几个主要概念是()。
无意识知觉研究的范式有()。
Obamamania
给定程序中,函数fun的功能是:判定形参a所指的N×N(规定N为奇数)的矩阵是否是“幻方”,若是,函数返回值为1:不是,函数返回值为0。“幻方”的判定条件是:矩阵每行、每列、主对角线及反对角线上元素之和都相等。例如,以下3×3的矩阵就是一个“
Hecouldnotdeterminewhichsamplewasontheslidebecausethemicroscopehasnotbeenadjusted.
Anoldsongsaysthat"lovemakestheworldgoaround."Ifyou【C1】______AmericansonValentine’sDay,youcanbelieveit.Thewh
最新回复
(
0
)