首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )
admin
2019-03-23
43
问题
已知n维列向量组(Ⅰ):α
1
,α
2
,…,α
r
(r<n)线性无关,则n维列向量组(Ⅱ):β
1
,β
2
,…,β
r
线性无关的充分必要条件为( )
选项
A、β
1
,β
2
,…,β
r
可由α
1
,α
2
,…,α
r
线性表示。
B、α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表示。
C、α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
r
等价。
D、矩阵A=(α
1
,α
2
,…,α
r
)与B=(β
1
,β
2
,…,β
r
)等价。
答案
D
解析
对于选项A,由已知条件只能得出R(Ⅱ)≤R(Ⅰ)=r,但不能得出R(Ⅱ)=R(Ⅰ)=r,故A项不正确。
对于选项B,由已知条件知r=R(Ⅰ)≤R(Ⅱ)≤r,于是R(Ⅱ)=r,即β
1
,β
2
,…,β
r
线性无关。因而B项是充分条件。但若β
1
,β
2
,…,β
r
线性无关,是不能得出α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表出的结论。例如,(Ⅰ):e
1
=(1,0,0)
T
,e
2
=(0,1,0)
T
;(Ⅱ):e
2
=(0,1,0)
T
,e
3
=(0,0,1)
T
,(Ⅰ)(Ⅱ)均线性无关,但(Ⅰ)不可由(Ⅱ)线性表出,故B项错误。
对于选项C,由于B项不是必要条件,则C项就不可能是必要条件。
对于选项D,注意到两个同型矩阵等价的充分必要条件是秩相等,由题设知R(A)=R(Ⅰ)=r,则A与B等价
β
1
,β
2
,…,β
r
线性无关,所以D选项是正确的,故选D。
本题主要考查的是向量组等价的相关问题。根据线性表示的向量组之间秩的关系能快速排除A、B选项,但C、D选项具有一定的迷惑性,需要充分认识矩阵等价与向量组等价的异同点:
①等价的向量组有相等的秩,等价的矩阵也有相等的秩;
②有相等秩的两个同型矩阵必等价,但有相等秩的两个同维向量组未必等价(如果其中一组还可由另一组线性表出,则必等价)。
转载请注明原文地址:https://kaotiyun.com/show/wHV4777K
0
考研数学二
相关试题推荐
设A=,已知r(A*)+r(A)=3,求a,b应该满足的关系.
已知A=是正定矩阵,证明△=>0.
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
设C=,其中A,B分别是m,n阶矩阵.证明C正定A,B都正定.
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
证明3阶矩阵
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。与的关系式并写
随机试题
眼的调节反应包括:_________,_________,_________。
以下有关建筑机械安全要求的说法正确的是()。
在空气净化设备中,喷淋塔的优点是()。
下列对账工作,属于企业账账核对的有()。
诱因
解析器是在()负责查询域名服务器时,解释域名服务器的应答,并将查询到的有关信息返回请求的程序或用户。
语句Print4+5\6*7/8Mod9的值是______。
为了使标签Label1透明且不具有边框,以下正确的属性设置是
ThedoctorinsistedthatPaul’smother______examinedthoroughly.
Forthispart,youareallowed30minutestowriteacompositiononthetopicTheAgingProblemInChina.Youshouldwriteatl
最新回复
(
0
)