首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为( )
admin
2019-03-23
30
问题
已知n维列向量组(Ⅰ):α
1
,α
2
,…,α
r
(r<n)线性无关,则n维列向量组(Ⅱ):β
1
,β
2
,…,β
r
线性无关的充分必要条件为( )
选项
A、β
1
,β
2
,…,β
r
可由α
1
,α
2
,…,α
r
线性表示。
B、α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表示。
C、α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
r
等价。
D、矩阵A=(α
1
,α
2
,…,α
r
)与B=(β
1
,β
2
,…,β
r
)等价。
答案
D
解析
对于选项A,由已知条件只能得出R(Ⅱ)≤R(Ⅰ)=r,但不能得出R(Ⅱ)=R(Ⅰ)=r,故A项不正确。
对于选项B,由已知条件知r=R(Ⅰ)≤R(Ⅱ)≤r,于是R(Ⅱ)=r,即β
1
,β
2
,…,β
r
线性无关。因而B项是充分条件。但若β
1
,β
2
,…,β
r
线性无关,是不能得出α
1
,α
2
,…,α
r
可由β
1
,β
2
,…,β
r
线性表出的结论。例如,(Ⅰ):e
1
=(1,0,0)
T
,e
2
=(0,1,0)
T
;(Ⅱ):e
2
=(0,1,0)
T
,e
3
=(0,0,1)
T
,(Ⅰ)(Ⅱ)均线性无关,但(Ⅰ)不可由(Ⅱ)线性表出,故B项错误。
对于选项C,由于B项不是必要条件,则C项就不可能是必要条件。
对于选项D,注意到两个同型矩阵等价的充分必要条件是秩相等,由题设知R(A)=R(Ⅰ)=r,则A与B等价
β
1
,β
2
,…,β
r
线性无关,所以D选项是正确的,故选D。
本题主要考查的是向量组等价的相关问题。根据线性表示的向量组之间秩的关系能快速排除A、B选项,但C、D选项具有一定的迷惑性,需要充分认识矩阵等价与向量组等价的异同点:
①等价的向量组有相等的秩,等价的矩阵也有相等的秩;
②有相等秩的两个同型矩阵必等价,但有相等秩的两个同维向量组未必等价(如果其中一组还可由另一组线性表出,则必等价)。
转载请注明原文地址:https://kaotiyun.com/show/wHV4777K
0
考研数学二
相关试题推荐
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设A是m×n实矩阵,r(A)=n,证明ATA是正定矩阵.
设A为实矩阵,证明r(ATA)=r(A).
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
设A是n阶实反对称矩阵,证明E+A可逆.
n维向量α=(a,0,...,0,a)T,a<0,A=E-ααT,A-1=E+α-1ααT,求a.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。是A的两个线性
随机试题
关于睫状环阻塞性青光眼,不正确的是
肠鸣音活跃常见于
患者肩背疼不可回顾,头痛身痛,腰脊疼痛,舌苔白,脉浮。治疗应选用
下列单项合同中,可以不招标的是()。
企业缴纳当月的增值税时,应借记()科目。
在树形结构中,树的根结点没有【】。
下列各项中,不属于软件开发阶段任务的是()。
WhendidMissGreenbecomeaswimmingstars
A、Decorateatreebythemselves.B、Borrowatreefromtheirneighbors.C、DowithoutatreeforChristmas.D、Buyadecoratedtree
Ithoughthavingababywouldhurtmywritingcareer.Iwaswrong.A)Ialmostdidn’thaveachildbecauseofmycareerasa
最新回复
(
0
)