首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫—1xt3|t|dt. 求函数f(x)的单调性区间与正、负值区间.
设f(x)=∫—1xt3|t|dt. 求函数f(x)的单调性区间与正、负值区间.
admin
2019-01-29
34
问题
设f(x)=∫
—1
x
t
3
|t|dt.
求函数f(x)的单调性区间与正、负值区间.
选项
答案
f′(x)=[*] f(x)在(—∞,0]上[*],在[0,+∞)上[*]. 为求f(x)的正负值区间,先求出使f(x)=0的x值.易知 f(—1)=∫
—1
—1
t
3
|t|dt=0,f(1)=∫
—1
1
t
3
|t|dt=0. 再由f(x)的单调性知, f(x)>f(—1)=0(x<—1), f(x)>f(1)=0(x>1), f(x)<f(—1)=0(—1<x≤0), f(x)<f(1)(0≤x<1). 因此f(x)>0(x∈(—∞,—1)或x∈(1,+∞)), f(x)<0(x∈(—1,1)).
解析
转载请注明原文地址:https://kaotiyun.com/show/wwj4777K
0
考研数学二
相关试题推荐
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设f在点(a,b)处的偏导数存在,求.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
求V(t)=[(t一1)y+1]dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,一≤y≤1},2≤t≤3。
求微分方程yy’’-y’2满足初始条件y(0)=y’(0)=1的特解.
已知A,B,A+B,A-1+B-1均为n阶可逆阵,则(A-1+B-1)-1等于()
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l3的方程为()。
电子焊接中一般焊接剂是什么?助焊剂是什么?
营销因素研究的内容不包括_______。
孙子说:“将者,智、信、仁、勇、严也”。用有关理论分析这句话的含义。
李某在证券交易所开立账户,委托该证券公司代为买卖证券。一日上午,李某以书面方式委托证券公司买入某股票。证券公司的工作人员刘某执行了李某的委托指令,但是在操作中因为刘某违反交易规则进行操作,给李某造成了1万元的损失。那么对此损失:
商业银行固定资产贷前调查报告内容不包括()。
下列选项中,关于教师教学能力评价的说法,错误的是()。
给定资料1.有人撰文称:“以淘宝为代表的电子商务,正在一步一步摧毁实体经济。而造成这一切的罪魁祸首,就是互联网。”文中称:“淘宝的推出扼杀了中国很多产业的创新力。它造成了全国比价,进而无限压低利润空间,导致制造业凋零,‘中国创造’之路或将从
若变量都已正确说明,则以下程序段的输出结果是()a=2;b=3;printf(a>b?"***a=%d":"###b=%d",a,b);
(浙江大学2008年试题)Sincetheearly1930s,Swissbankshadpridedthemselvesontheirsystemofbankingsecrecyandnumberedaccou
最新回复
(
0
)