设X~N(μ,σ2),Y~N(μ,σ2),且设X,Y相互独立,试求Z1=αX+βY,Z2=αX-βY的相关系数(其中α,β是不为零的常数).

admin2017-08-25  35

问题 设X~N(μ,σ2),Y~N(μ,σ2),且设X,Y相互独立,试求Z1=αX+βY,Z2=αX-βY的相关系数(其中α,β是不为零的常数).

选项

答案 因E(X)=E(Y)=μ,D(X)=D(Y)=σ2,且X,Y相互独立,所以 E(Z1)=E(αX+βY)=(α+β)μ, E(Z2)=E(αX-βY)=(α-β)μ, E(Z1Z2)=E(α2X2-β2Y2)=α2E(X2)-β2E(Y2) =(α2-β2)(μ22), D(Z1)=D(αX+βY)=α2D(X)+β2D(Y) =(α222, D(Z2)=D(αX-βY)=a2D(X)+β2D(Y) =(α222, 因此 Cov(Z1,Z2)=E(Z1Z2)-E(Z1)E(Z2) =(α222, [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/x6fR777K
0

最新回复(0)