首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
已知A,B均是2×4矩阵,Ax=0有基础解系ξ1=(1,3,0,2)T,ξ2=(1,2,-1,3)T;Bx=0有基础解系η1=(1,1,2,1)T,η2=(0,-3,1,+1)T. (Ⅰ)求矩阵A; (Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并
admin
2019-01-24
39
问题
已知A,B均是2×4矩阵,Ax=0有基础解系ξ
1
=(1,3,0,2)
T
,ξ
2
=(1,2,-1,3)
T
;Bx=0有基础解系η
1
=(1,1,2,1)
T
,η
2
=(0,-3,1,+1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求参数a的值,使Ax=0和Bx=0有非零公共解,并求该非零公共解.
选项
答案
(Ⅰ)记C=(ξ
1
,ξ
2
),则AC=A(ξ
1
,ξ
2
)=0,两边转置得C
T
A
T
=0. 所以矩阵A的行向量即AT的列向量是CTX一0的解,对CT作初等行变换,有 [*] 解得C
T
x=0的基础解系为α
1
=(3,-1,1,0)
T
,α
2
=(-5,1,0,1)
T
. 所以A=k
1
α
1
+k
2
α
2
=[*] 其中k
1
,k
2
是任意非零常数. (Ⅱ)设Ax=0和Bx=0有非零公共解,为δ,则δ可由ξ
1
,ξ
2
线性表出,也可由η
1
,η
2
线性表出, 设为 δ=x
1
ξ
1
+x
2
ξ
2
=-x
3
η
1
=x
4
η
4
, 得 x
1
ξ
1
+x
2
ξ
2
+x
3
η
1
+x
4
η
2
=(ξ
1
,ξ
2
,η
1
,η
2
)x=0. 对(ξ
1
,ξ
2
,η
1
,η
2
)作初等行变换,有 [*] 因为δ≠0,故(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解,[*],故当a=-1时,(ξ
1
,ξ
2
,η
1
,η
2
)x=0有非零解为k(2,-1,-1,1)
T
,其中k是非零常数. δ=k(2ξ
1
-ξ
2
)=k(1,4,1,1)
T
(或δ=k(η
1
-η
2
)),其中k是非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/xSM4777K
0
考研数学一
相关试题推荐
考虑一个试验中,一位机械师从一批零件中逐个拿出零件,直到拿到符合要求的零件为止.拿出零件不符合要求记为F,符合要求记为S.(1)写出这一试验的样本空间;(2)记X=试验终止时取出的零件个数,写出随机变量X作为样本空间上的函数的表达式.
设随机变量X服从参数为的指数分布,对X独立地重复观察4次,用Y表示观察值大于3的次数,求E(Y2).
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止,设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(φ(1)=0.8413,φ(2)=0.9
设x一(a+bcosx)sinx为x→0时x的5阶无穷小,求a,b的值.
求微分方程y’’+2y’一3y=(2x+1)ex的通解.
判断级数的敛散性.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2。求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设则有().
计算定积分∫01.
随机试题
催泪弹属于警械。
大秦艽汤中配伍白芷的主要用意是
根据《城乡规划法》第十七条规定,城市总体规划、镇总体规划的强制性内容不包括()
按是否考虑资金的时间价值,投资方案经济效果评价方法分为()。
不属于DRB方式工作程序的有( )。
下列不属于外资银行营业性机构的是()。
下列选项中,不属于鉴定成本的是()。
污名认同,是指一个社群或族群对自己产生负面的认同感,因而竭力排斥自己的母文化及表征,并向另一文化迅速靠拢或同化。根据上述定义,下列不属于污名认同的是:
定义:①性善论:认为人性本来就是善的。②怀疑论:指对客观世界和客观真理是否存在、能否认识表示怀疑。③快乐论:主张快乐是人生的虽高幸福,追求快乐是人生的目的与道德的标准。典型例证:(1)有人说:“从人之性,顺
A、 B、 C、 D、 BUPS的中文译名是不间断电源。
最新回复
(
0
)