首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且 α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=( )
admin
2018-01-26
61
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且
α
1
+α
2
-α
3
=(2,0,-5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
-2α
1
=(2,4,1,-2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于nR(A)=4-2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除(C)、(D)。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
-2α
1
)=-b,所以(A)中(1,4,1,1)
T
和(B)中(-2,-4,-,2)
T
都是方程组Ax=b的解。
(A)和(B)中均有(2,2,-2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
-α
3
)-(α
2
+2α
3
)=3(α
1
-α
3
)+2(α
2
-α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
-α
3
)+2(α
2
-α
3
)是Ax=0的解,所以(3,-12,-18,9)
T
是Ax=0的解,那么(1,-4,-6,3)
T
也是Ax=0的解。故应选(A)。
转载请注明原文地址:https://kaotiyun.com/show/xSr4777K
0
考研数学一
相关试题推荐
设f(x)=,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为__________.
设X和Y相互独立都服从0—1分布:P{X=1)=P{Y=1)=0.6.试证明:U=X+Y,V=X—Y不相关,但是不独立.
设A是主对角元为0的四阶实对称阵,E是四阶单位阵,且E+AB是不可逆的对称阵,求A.
方程组的通解是__________.
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是()
设(1)求y(0),y’(0),并证明:(1一x2)y’’一xy’=4;(2)求的和函数及级数的值.
设A为m×N实矩阵,e为N阶单位矩阵.已知矩阵b=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x
随机试题
项目型组织结构的缺点是()。
保险人的义务的有()
流动采血监控工作不包括
公司出资存在哪些问题?若丙想转让股权以退出公司,应按何种方式进行?
2009年3月,某人由中方企业委派到合资企业工作,派遣单位和雇佣单位每月分别支付其工资1400元和8000元,按照协议,个人需向派遣单位缴款3000元。该个人每月应纳的个人所得税为()。
正达会计师事务所长期以来主要开展对银行、保险公司等金融机构的年报审计业务。2007年5月初,事务所的负责人张平成正在考虑下列客户的具体情况,以保持审计业务的独立性。下面是正达会计师事务所及注册会计师与客户之间往来的相关情况:(1)A保险公司于2
已知FeSO4.7H2O晶体在加热条件下发生如下反应:2FeSO4.7H2OFe2O3+SO2↑+SO3↑+14H2O↑;如下图装置经组装后,可用来检验上述反应中所有的气体产物,请回答下列问题:用于检验SO2气体的装置是:_________(填装置的
试论述初中生人际交往的新特点。
中国绘画是以庄子哲学为精神宗旨的。其最高境界是在人与对象的双重自然状态下实现物我浑融的境界。《庄子.田子方》载,宋元君招试画师,应试者皆___________,唯有一后到者,“解衣盘礴赢”,任性自然地投身于画作。宋元君称此人为“真画者”。所谓“真画者”,是
数据访问页中主要用来显示描述性文本信息的是()。
最新回复
(
0
)