首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T. 当a为何值时,向量组(I)与(Ⅱ)等价?
admin
2013-04-04
89
问题
设有向量组(I):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.
当a为何值时,向量组(I)与(Ⅱ)等价?
选项
答案
对(α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)作初等行变换,有 (α
1
,α
2
,α
3
:β
1
,β
2
,β
3
)=[*] [*] 当a≠-1时,行列式丨α
1
,α
2
,α
3
丨=a+1≠0,由克莱姆法则,知三个线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3) 均有唯一解. 所以,β
1
,β
2
,β
3
可由向量组(I)线性表出. 由于行列式 丨β
1
,β
2
,β
3
丨=[*] 方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
j
(j=1,2,3))恒有唯一解,即α
1
,α
2
,α
3
总可由向量组(Ⅱ)线性表出. 因此,当n≠-1时,向量组(I)与(Ⅱ)等价.
解析
所谓向量组(I)与(Ⅱ)等价,即向量组(I)与(Ⅱ)可以互相线性表m.若方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,即β可以由α
1
,α
2
,α
3
线性表出.若对同一个a,三个方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有解,即向量组(Ⅱ)可以由(I)线性表出.
转载请注明原文地址:https://kaotiyun.com/show/xX54777K
0
考研数学一
相关试题推荐
(1997年)设F(χ)=∫χχ+2χesintsintdt,则F(χ)【】
[2018年]下列矩阵中,与矩阵相似的为().
[2013年]设函数y=f(x)由方程cos(xy)+lny一x=l确定,则=().
(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】
A、处处可导B、恰有一个不可导点C、恰有两个不可导点D、至少有三个不可导点C一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式的不变性.利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数.幂指数函数f(x)g(x)求导法,隐
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设广义积分收敛,则α的范围为().
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:g(t)=在t=0处取得极大值。
随机试题
下列卵巢黏液性囊腺瘤声像图特点,哪一项是错误的
患者,女,62岁。诊断胃癌,血压160/100mmHg,中度贫血,消瘦,术前准备中不必要的干预措施是
A、非水滴定法B、双步滴定法C、溴量法D、酸碱滴定法E、高效液相色谱法阿司匹林
患者,男,58岁。因失眠多梦半月余就诊。现入睡困难,心烦口苦,头重如裹,胸闷,舌红,苔黄腻,脉滑数,其治法是()。
下列关于调解的说法正确的是:()
下列哪一些做法不符合公证员职业道德的要求?
根据资源的优先级对资源消耗计划进行优化及平衡的方法之一,是在时差范围内调整()。
城市消防远程监控系统在各项功能调试后进行试运行,试运行时间不少于()个月。
入境特殊物品在入境前7天在当地检验机构办理审批。( ).
_________的主要目的是有效地管理和存取大量的数据资源。
最新回复
(
0
)