首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2001年] 设函数y=f(x)由方程e2x+y一cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_________.
[2001年] 设函数y=f(x)由方程e2x+y一cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_________.
admin
2021-01-19
95
问题
[2001年] 设函数y=f(x)由方程e
2x+y
一cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_________.
选项
答案
先用隐函数求导法则,求出在x=0处的切线斜率f′(0),则对应的法线斜率为一1/f′(0),即可写出法线方程. 因点(0,1)满足所给方程,故点(0,1)在曲线y=f(x)上.先求曲线y=f(x)在点(0,1)处的切线斜率.为此在所给方程e
2x+y
—cos(xy)=e一1两边对x求导,得到e
2x+y
(2+y′)+sin(xy)(y+xy′)=0.将x=0,y=1代入得y′∣
x=0
=一2. 又因曲线在同一点处切线斜率与法线斜率为负倒数,故在点(0,1)处的法线斜率为1/2,所以所求的法线方程为y一1一(1/2)(x—0),即x一2y+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/xk84777K
0
考研数学二
相关试题推荐
设f(u,v)具有连续偏导数,且满足f’(u,v)+f’(u,v)=uv.求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;
曲线的渐近线方程是_______.
设fn(x)=x﹢x2﹢…﹢xn-1(n=2,3,…).(I)证明方程fn(x)=0在区间[0,﹢∞)内存在唯一的实根,记为xn;(Ⅱ)求(I)中的{xn)的极限值.
设f(x),g(x)均有二阶连续导数且满足f(0)>0,f′(0)=0,g(0)=0,则函数u(x,y)=f(x)∫1yg(t)dt在点(0,0)处取极小值的一个充分条件是
设具有二阶连续导数,则=__________。
(2006年试题,16)求不定积分
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
设有定义在(-∞,+∞)上的函数:则(Ⅰ)其中在定义域上连续的函数是________;(Ⅱ)以x=0为第二类间断点的函数是________.
(2011年)已知函数f(χ,y)具有二阶连续偏导数,且f(1,y)=0,f(χ,1)=0,(χ,y)dχdy=a,其中D={(χ,y)|0≤χ≤1,0≤y≤1),计算二重积分I=χyf〞χy(χ,y)dχdy.
随机试题
于大脑锥体细胞的描述,哪一项错误?()
(非英语类学生必做)IarrivedintheUnitedStates【61】February6,1986,butIremembermyfirstdayherevery【62】Myfriendwaswa
功能活血止痛,消肿生肌的药物是
下列关于脑卒中及其药物治疗的说法错误的是
国外建筑安装工程费用中的暂定金额只有经()批准后才能动用。
【真题(初级)】股份有限公司的权力机构是()。
下列各项中,不记入“财务费用”科目借方的是()。
Themarketisaconcept.Ifyouaregrowingtomatoesinyourbackyardforsaleyouareproducingforthemarket.Youmightsell
Howlonghasthemansufferedfromthesymptomshedescribed?
______(只有积极投身于社会实践)canyouaccumulateenoughworkingexperience.
最新回复
(
0
)