首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
admin
2021-06-16
126
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
对于任意给定的x
1
∈[a,b],定义x
n+1
=f(x
n
),n=1,2,…,则
x
n
存在,且
x
n
=ξ.
选项
答案
为证[*]x
n
=ξ,考虑 |x
n
-ξ|=|f(x
n-1
)-f(ξ)|≤k|x
n-1
-ξ|≤…≤k
n-1
|x
1
-ξ| 其中x
1
与ξ都是确定的值。 所以当n→∞时,|x
n
-ξ|→0,从而证明了[*]x
n
存在,且[*]x
n
=ξ,证明完毕。
解析
注意:此题若增加条件“f(x)在[a,b]上可导,且|f’(x)|≤k<1”则可应用拉格朗日中值定理来完成不等式。
对[a,b]上的任意两点x
1
,x
2
均有
|f(x
1
)-f(x
2
)|=|f’(ξ)(x
1
-x
2
)|≤k|x
1
-x
2
|(ξ介于x
1
与x
2
之间),
也能继续证明本题的结论,其子题可如此设置:
设f(x)=a+bsinx,a为任意常数,0<b<1。
(1)证明f(x)=x有唯一实根ξ;
(2)定义x
n+1
=f(x
n
),n=1,2,...,证明:
.
转载请注明原文地址:https://kaotiyun.com/show/y6y4777K
0
考研数学二
相关试题推荐
若是(一∞,+∞)上的连续函数,则a=__________.
设=_____________.
设函数f(x)在[0,1]上连续,且f(x)>0,则=_____
设A、B为3阶方阵且A-1BA=6A+BA,则矩阵B=_______.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设u=u(x,y)有二阶连续偏导数,证明:在极坐标变换x=rcosθ,y=rsinθ下有
设有定义在(-∞,+∞)上的函数:则其中在定义域上连续的函数是_______.
设f(χ)可导,则当△χ→0时,△y-dy是△χ的().
设y=,且f’(x)=arctanx2,求|x=0=__________.
随机试题
应用部件装配法可以________。
足月产后10天,恶露不多。夏季,天气闷热,产妇感口渴、胸闷、心悸,体温38.9℃,脉搏116次/分,呼吸28次/分,血压80/50mmHg。此产妇的诊断是
输卵管妊娠患者前来就诊时,最常见的主诉是()。
下列关于粉尘爆炸的说法,错误的是()。
2012年4月,甲公司因欠乙公司货款100万元不能按时偿还,向乙公司请求延期至2013年4月1日还款,并愿意以本公司所有的3台生产设备进行抵押和1辆轿车进行质押,为其履行还款义务提供担保。乙公司同意了甲公司的请求,并与甲公司订立了书面抵押合同和质押合同。甲
论述培训实施计划的控制步骤。
Willyoutwogototheshowtomorrow?—No.We’regoingtoalecture,oratleastI’mplanning______.
在著名的优质麦产区山东省兖州市,国际粮商与改制后的基层粮管所合作,利用其收储网络大量收购小麦、玉米等粮源,形成具有一定规模的收储网络。在不断复制这种模式的同时,在国内企业已经进驻的地方,国际粮商开设面粉加工企业,利用掌握的优质粮源以及低价策略挤压国内企业生
Studythefollowingdrawingcarefullyandwriteanessayin"whichyoushould1)describethedrawing,2)analyzethepurposeo
A、Thewoman’spresentroomislargerthantheoldone.B、Themanisnowlivingtogetherwithhischildren.C、Thewoman’sfriends
最新回复
(
0
)