首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a). (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a). (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
admin
2019-04-05
61
问题
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ″(ξ)<0.
选项
答案
利用介值定理证明(I),利用积分中值定理和拉格朗日中值定理证明(Ⅱ). 证 (I)设M和m分别为函数f(x)在区间[a,b]上的最大值及最小值,则 m(b一a)≤∫
a
b
f(x)dx≤M(b-a). 在以上不等式两边各除以b一a,得到 m≤[*]∫
a
b
f(x)dx≤M. 这表明确定的数[*]∫
a
b
f(x)dx介于函数f(x)的最小值m及最大值M之间.由闭区间上连续函数的介值定理知,在[a,b]上至少存在一点η,使得函数f(x)在点η处的值与这个确定的数值相等,即应有 [*]∫
a
b
f(x)dx=f(η) (a≤η≤b). 两端各乘以b-a,即得所要证的等式. (Ⅱ)由(I)的结论知,至少存在一点η∈[2,3],使 ∫
2
3
2φ(x)dx=φ(η)(3-2)=φ(η),2≤η≤3. 又由φ(2)>∫
2
3
φ(x)dx=φ(η),φ(2)>φ(1)知,对φ(x)分别在[1,2]及[2,η]上使用拉格朗日中值定理,得到 φ′(ξ
1
)=[*]>0, 1<ξ
1
<2, φ′(ξ
2
)=[*]<0, 2<ξ
2
<η≤3. 在[ξ
1
,ξ
2
]上对导函数φ′(x)使用拉格朗日中值定理,得到 φ″(ξ)=[*]<0, ξ∈(ξ
1
,ξ
2
)[*](1,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/yXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
证明3阶矩阵
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
判断下列函数的单调性:
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
随机试题
简述成本与费用控制的作用。
根据组织的目标,可以把组织划分为()。
某建筑地下室有一间12m×9m的燃油锅炉房,需采用泡沫喷淋灭火系统加以保护。燃油锅炉房内共布置12个ZPTX一15型泡沫喷头,设置高度为8m,流量特性系数K=41,正方形布置最大间距为3m。采用氟蛋白泡沫液,泡沫混合比3%。则喷头的最小工作压力为(
【背景资料】某施工单位承接了一高速公路标段K10+300~K24+400的施工。合同中约定,工程价款采用调值公式动态结算。该工程材料费、人工费各占工程价款中的30%,不调值费用占40%。6月材料价格指数比基期上升30%。6月完成工程量金额为463
下列说法正确的是()。
Peopleare,onthewhole,pooratconsideringbackgroundinformationwhenmakingindividualdecisions.Atfirstglancethismigh
将考生文件夹下WORD2文件夹中的文件A—EXCEL.MAP删除。
Thestreetbeingclosedforrepairs,wehadtocome______bythebridge.
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】______theturnofthecenturywhenjazzwasborn,Americ
Inancienttimes,OlympicgameswereheldasareligiousfestivaltohonortheGreekgods.TheancientOlympicgamesdisplayed
最新回复
(
0
)